forked from taherfattahi/dnn-amr-reley-differential-curve
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.go
executable file
·121 lines (101 loc) · 2.6 KB
/
main.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
package main
/*
#cgo CFLAGS: -I ./include
//points to the right platform version of tflite libs
#cgo arm LDFLAGS: -L arm
#cgo darwin LDFLAGS: -L macosx
#cgo x86_64 LDFLAGS: -L x86_64
#cgo LDFLAGS: -ltensorflowlite_c
//Raspberry Pi needs to include libatomic when linking w/ tflite
#cgo arm LDFLAGS: -latomic
#include "tensorflow/lite/c/c_api.h"
#include <stdlib.h>
*/
import "C"
import (
"fmt"
"sync"
"unsafe"
)
type TFGan struct {
modelName *C.char
model *C.TfLiteModel
options *C.TfLiteInterpreterOptions
runner *C.TfLiteInterpreter
input *C.TfLiteTensor
inputBuffer []float32
output *C.TfLiteTensor
mutex sync.Mutex
}
func makeTFGan(modelName string) *TFGan {
version := C.TfLiteVersion()
fmt.Printf("Tensorflow Version: %v\n", C.GoString(version))
name := C.CString(modelName)
model := C.TfLiteModelCreateFromFile(name)
if model == nil {
fmt.Printf("failed to create model from - %v\n", C.GoString(name))
return nil
}
options := C.TfLiteInterpreterOptionsCreate()
if options == nil {
fmt.Printf("failed to create options for %v\n", modelName)
return nil
}
C.TfLiteInterpreterOptionsSetNumThreads(options, C.int32_t(4))
runner := C.TfLiteInterpreterCreate(model, options)
if runner == nil {
fmt.Printf("failed to create interperter for %v\n", modelName)
return nil
}
C.TfLiteInterpreterAllocateTensors(runner)
input := C.TfLiteInterpreterGetInputTensor(runner, 0)
if input == nil {
fmt.Printf("input tensor is empty\n")
return nil
}
output := C.TfLiteInterpreterGetOutputTensor(runner, 0)
if output == nil {
fmt.Printf("putput tensor is empty\n")
return nil
}
return &TFGan{
modelName: name,
model: model,
options: options,
runner: runner,
input: input,
output: output,
inputBuffer: []float32{},
}
}
func (gan *TFGan) free() {
C.TfLiteInterpreterDelete(gan.runner)
C.TfLiteModelDelete(gan.model)
C.free(unsafe.Pointer(gan.modelName))
}
func main() {
gan := makeTFGan("model/tfliteModel.tflite")
if gan == nil {
fmt.Printf("failed \n")
return
}
// input your data
inputData := []float32{2.55, 3}
ptr1 := C.TfLiteTensorData(gan.input)
if ptr1 == nil {
fmt.Errorf("bad tensor")
}
n1 := uint(C.TfLiteTensorByteSize(gan.input)) / 4
to := (*((*[1<<29 - 1]float32)(ptr1)))[:n1]
copy(to, inputData)
if C.TfLiteInterpreterInvoke(gan.runner) != C.kTfLiteOk {
fmt.Printf("failed to run\n")
}
ptr := C.TfLiteTensorData(gan.output)
if ptr == nil {
fmt.Errorf("bad tensor")
}
n := uint(C.TfLiteTensorByteSize(gan.output)) / 4
result := (*((*[1<<29 - 1]float32)(ptr)))[:n]
fmt.Println(result)
}