-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_gym_wrap.py
38 lines (29 loc) · 917 Bytes
/
run_gym_wrap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import os
import logging
from common import Connection
from envs import EnvMovementExpert
from stable_baselines3.common.env_checker import check_env
from stable_baselines3.ppo import PPO
class NoLevelFormatter(logging.Formatter):
def format(self, record):
return record.getMessage()
logging.basicConfig(level=logging.INFO)
logging.getLogger().handlers[0].setFormatter(NoLevelFormatter())
connection = Connection('127.0.0.1', 12024)
env = EnvMovementExpert(grid_factor=10, connection=connection)
check_env(env)
model_path = 'rl_models/test.model'
# if os.path.exists(model_path):
# model = PPO.load(model_path, env=env)
# else:
model = PPO(
env=env,
batch_size=128,
policy="MultiInputPolicy",
policy_kwargs={'net_arch': [256, 256]},
verbose=1)
while True:
model.learn(total_timesteps=100)
for k, v in model.logger.name_to_value:
logging.info('%s: %s', k, v)
model.save(model_path)