Skip to content

Latest commit

 

History

History
39 lines (28 loc) · 1.05 KB

README.md

File metadata and controls

39 lines (28 loc) · 1.05 KB

Navigable Graphs Python

Results

Syntetic data results:

m = 50, m0 = 50, ef_construction = 30, n = 10000, dim = 128, k = 5
ef_values = [5, 10, 20, 30, 40, 50]

Recall vs Computations per Node

Results on real data (run the code as in the example from Usage):

m = 50, m0 = 50
Dataset Method Average recall Avg calc
sift10k baseline 0.9739 246.75
sift10k custom 0.9780 244.53
sift1m baseline 0.8074 420.43
sift1m custom 0.7943 413.52

Usage

Python based research tool for studying navigable graphs for nearest neighbour search

Using the SIFT dataset:

python navigable-graphs.py --dataset sift

Using synthetic data with 3D vectors:

python navigable-graphs.py --dataset synthetic --K 20 --k 5 --dim 3 --n 500 --nq 100 --ef 20 --M 2