-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels_vit.py
executable file
·147 lines (117 loc) · 4.73 KB
/
models_vit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
"""
# References:
# MAE: https://github.com/facebookresearch/mae
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# DeiT: https://github.com/facebookresearch/deit
"""
from functools import partial
import torch
import torch.nn as nn
import timm.models.vision_transformer
class VisionTransformer(timm.models.vision_transformer.VisionTransformer):
""" Vision Transformer with support for global average pooling
"""
def __init__(self, global_pool=False, fc_norm=True, **kwargs):
super(VisionTransformer, self).__init__(**kwargs)
self.global_pool = global_pool
if self.global_pool:
if fc_norm:
norm_layer = kwargs['norm_layer']
embed_dim = kwargs['embed_dim']
self.fc_norm = norm_layer(embed_dim)
del self.norm # remove the original norm
self.norm = nn.Identity()
else:
self.fc_norm = nn.Identity()
def forward_last_features(self, x):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed
x = self.pos_drop(x)
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
return x
def forward_features(self, x):
x = self.forward_last_features(x)
if self.global_pool:
x = x[:, 1:, :].mean(dim=1) # global pool without cls token
outcome = self.fc_norm(x)
else:
outcome = x[:, 0]
return outcome
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def get_intermediate_layers(self, x, n=1):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed
x = self.pos_drop(x)
# we return the output tokens from the `n` last blocks
output = []
for i, blk in enumerate(self.blocks):
x = blk(x)
if len(self.blocks) - i <= n:
output.append(self.norm(x))
return output
def interpolate_pos_encoding(self, x, pos_embed):
npatch = x.shape[1] - 1
N = pos_embed.shape[1] - 1
if npatch == N:
return pos_embed
class_emb = pos_embed[:, 0]
pos_embed = pos_embed[:, 1:]
dim = x.shape[-1]
pos_embed = nn.functional.interpolate(
pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),
scale_factor=math.sqrt(npatch / N),
mode='bicubic',
)
pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_emb.unsqueeze(0), pos_embed), dim=1)
def forward_blocks(self, x, num_blocks=1, patch_drop=0.):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
x = x + pos_embed
x = self.pos_drop(x)
if patch_drop > 0:
patch_keep = 1. - patch_drop
T_H = int(np.floor((x.shape[1]-1)*patch_keep))
perm = 1 + torch.randperm(x.shape[1]-1)[:T_H] # keep class token
idx = torch.cat([torch.zeros(1, dtype=perm.dtype, device=perm.device), perm])
x = x[:, idx, :]
cls_x = []
for i in range(len(self.blocks)):
x = self.blocks[i](x)
if (len(self.blocks) - i) <= num_blocks:
outcome = self.norm(x)
if self.global_pool: # global pool without cls token
outcome = self.fc_norm(outcome[:, 1:, :].mean(dim=1))
else:
outcome = outcome[:, 0]
cls_x.append(outcome)
return torch.cat(cls_x, dim=-1)
def vit_small_patch16(**kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4,
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def vit_base_patch16(**kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def vit_large_patch16(**kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model