-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtestImuData.m
190 lines (166 loc) · 5.28 KB
/
testImuData.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
%% Clean up
clc;
clear rosbag_wrapper;
clear ros.Bag;
clear all;
close all;
addpath('helpers');
addpath('keyframe_imu');
addpath('../MATLAB/utils');
addpath('../MATLAB/kinematics_toolbox/screws');
addpath('kitti/devkit');
addpath('kitti');
if ismac
addpath('~/Dropbox/UTIAS - MASc/Code/MATLAB/matlab_rosbag-0.4-mac64/');
else
addpath('~/Dropbox/UTIAS - MASc/Code/MATLAB/matlab_rosbag-0.4-linux64/');
end
%%
rosBagFileName = '/home/valentin/Desktop/Crucifix/2014-09-20-17-25-01.bag';
imuTopic = '/microstrain/imu/data';
% rosBagFileName = '/home/valentin/Desktop/Nexus5Data/2014-09-20-16-09-27.bag';
% imuTopic = '/android/imu';
bag = ros.Bag.load(rosBagFileName);
bag.info()
bagImuData = bag.readAll({imuTopic});
imuData.timestamps = [];
imuData.measAccel = [];
imuData.measOrient = [];
imuData.measOmega = [];
for t=1:length(bagImuData)
i = t;
imuData.timestamps(1,i) = bagImuData{t}.header.stamp.time;
imuData.measOrient(:,i) = [bagImuData{t}.orientation(4); bagImuData{t}.orientation(1:3)];
imuData.measAccel(:,i) = bagImuData{t}.linear_acceleration;
imuData.measOmega(:,i) = bagImuData{t}.angular_velocity;
end
% csvFile = '~/Desktop/500Hzmotion.csv';
% imuDataCSV = csvread(csvFile);
%
% imuData.timestamps = [];
% imuData.measAccel = [];
% imuData.measOrient = [];
% imuData.measOmega = [];
% imuData.measPRH = [];
%
% for i=1:size(imuDataCSV,1)
% imuData.timestamps(i) = imuDataCSV(i,1);
% imuData.measAccel(:,i) = 9.80665*imuDataCSV(i,5:7)';
% imuData.measOmega(:,i) = imuDataCSV(i,8:10)';
% imuData.measPRH(:,i) = imuDataCSV(i,2:4)/180*pi;
% end
%==============
% jkFile = '~/Desktop/timing-1.txt';
% imuDataCSV = importdata(jkFile, ' ');
% imuData.timestamps = [];
% imuData.measAccel = [];
% imuData.measOrient = [];
% imuData.measOmega = [];
% imuData.measPRH = [];
%
% for i=1:size(imuDataCSV,1)
% imuData.timestamps(i) = imuDataCSV(i,1);
% imuData.measAccel(:,i) = 9.80665*imuDataCSV(i,3:5)';
% imuData.measOmega(:,i) = imuDataCSV(i,6:8)';
% end
%================
% csvFile = '~/Desktop/deltaAngledetlaV.csv';
% imuDataCSV = csvread(csvFile);
%
% imuData.timestamps = [];
% imuData.measAccel = [];
% imuData.measOrient = [];
%
% for i=1:size(imuDataCSV,1)
% imuData.timestamps(i) = imuDataCSV(i,1);
% imuData.measAccel(:,i) = 9.80665*imuDataCSV(i,5:7)'/(1/500);
% imuData.measOmega(:,i) = imuDataCSV(i,2:4)'/(1/500);
% end
%%
close all
dt = 1/500;
biasSec = 0.5;
g_mag = 9.805;
% First calculate the bias by subtracting the gravity vector (which we know is upwards)
% Use the first 10 seconds of data
linearAccelList = zeros(3,biasSec/dt);
omegaList = zeros(3,biasSec/dt);
for imu_i = 1:(biasSec/dt)
% linearAccel = imuData.measAccel(:, imu_i) + testConvertPRHtoM(imuData.measPRH(:, imu_i))*[0 0 g_mag]';
linearAccel = imuData.measAccel(:, imu_i) + rotmat_from_quat(imuData.measOrient(:,imu_i))'*[0 0 g_mag]';
linearOmega = imuData.measOmega(:, imu_i);
linearAccelList(:, imu_i) = linearAccel;
omegaList(:, imu_i) = linearOmega;
end
omegaBias = mean(omegaList,2)
accelBias = mean(linearAccelList,2)
% accelBias(3) = 0
% omegaBias(2) = 0
% omegaBias(1) = 0
% imuData.measAccel(3,:) = 0;
% imuData.measOmega(2,:) = 0;
% imuData.measOmega(1,:) = 0;
%%
% figure
% subplot(1,3,1)
% xAccel = imuData.measAccel(1,:)- accelBias(1);
% hist(xAccel, 50)
% title(sprintf('X \n Mean: %.5f \n Median: %.5f \n Min: %.5f \n Max: %.5f \n STD: %.5f', mean(xAccel), median(xAccel), min(xAccel),max(xAccel),std(xAccel)))
%
% subplot(1,3,2)
% yAccel = imuData.measAccel(2,:)- accelBias(2);
% hist(yAccel, 50)
% title(sprintf('Y \n Mean: %.5f \n Median: %.5f \n Min: %.5f \n Max: %.5f \n STD: %.5f', mean(yAccel), median(yAccel), min(yAccel),max(yAccel),std(yAccel)))
%
% subplot(1,3,3)
% zAccel = imuData.measAccel(3,:)- accelBias(3) + g_mag;
% hist(zAccel, 50)
% title(sprintf('Z \n Mean: %.5f \n Median: %.5f \n Min: %.5f \n Max: %.5f \n STD: %.5f', mean(zAccel), median(zAccel), min(zAccel),max(zAccel),std(zAccel)))
%%
g_w = [0;0;0];
noiseParams = [];
xInit.p = zeros(3,1);
xInit.v = zeros(3,1);
xInit.b_g = omegaBias;
xInit.b_a = accelBias;
xInit.q = [1; zeros(3,1)];
xState = xInit;
rpy_list = zeros(3, length(imuData.timestamps));
pos_list = zeros(3, length(imuData.timestamps));
for imu_i = 1:length(imuData.timestamps)
if imu_i > 1
dt = imuData.timestamps(imu_i) - imuData.timestamps(imu_i-1);
end
%imuAccel = imuData.measAccel(:, imu_i);
imuOmega = imuData.measOmega(:, imu_i);
%Use the magnetometer
imuAccel = imuData.measAccel(:, imu_i) + rotmat_from_quat(imuData.measOrient(:,imu_i))'*[0 0 g_mag]';
g_w = zeros(3,1);
%Integrate
[xState] = integrateIMU(xState, imuAccel, imuOmega, dt, noiseParams, g_w);
pos_list(:, imu_i) = xState.p;
rpy_list(:,imu_i) = rpy_from_rotmat(rotmat_from_quat(xState.q))*180/pi;
end
%Plot the final result
figure;
subplot(2,3,1);
plot(pos_list(1,:))
title('X');
subplot(2,3,2);
plot(pos_list(2,:))
title('Y');
subplot(2,3,3);
plot(pos_list(3,:))
title('Z');
subplot(2,3,4);
plot(rpy_list(1,:))
title('Roll');
subplot(2,3,5);
plot(rpy_list(2,:))
title('Pitch');
subplot(2,3,6);
plot(rpy_list(3,:))
title('Yaw');
%%
figure;
plot3(pos_list(1,:),pos_list(2,:),pos_list(3,:))