-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtestDepthFilter.m
212 lines (154 loc) · 6.94 KB
/
testDepthFilter.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
%% Clean up
clc;
clear rosbag_wrapper;
clear ros.Bag;
clear all;
close all;
addpath('helpers');
addpath('keyframe_imu');
addpath('../MATLAB/utils');
addpath('simulation');
addpath('depth_filter/');
addpath('triangulation/');
if ismac
addpath('/Users/valentinp/Research/opengv/matlab');
else
addpath('~/Dropbox/Research/Ubuntu/opengv/matlab');
end
if ismac
addpath('/Users/valentinp/Research/gtsam_toolbox');
else
addpath('~/Dropbox/Research/Ubuntu/gtsam_toolbox/');
end
import gtsam.*;
%% Generate the measurments
%Generate a forward trajectory
i = 1;
for t = 0:0.05:2
T_wCam_GT(:,:,i) = [eye(3) [t 0 0]'; 0 0 0 1];
i=i+1;
end
%Generate the true landmarks
landmarks_w = [];
for x_i = 0:0.1:2
for y_i = -1:0.1:1
landmarks_w = [landmarks_w [x_i y_i 5]'];
end
end
%%
simSetup.pixelNoiseStd = 1; %pixels
simSetup.cameraResolution = [1280, 960]; %pixels
simSetup.imuRate = 10; % Hz
simSetup.cameraRate = 10; % Hz
%Set the camera intrinsics
focalLength = 4*1e-3; %4 mm
pixelWidth = 4.8*1e-6;
%
K = [focalLength/pixelWidth 0 640;
0 focalLength/pixelWidth 480;
0 0 1];
invK = inv(K);
%Generate image data
disp('Generating image measurements...');
imageMeasurements = genImageMeasurements(T_wCam_GT, landmarks_w, K, simSetup);
%
%visualizeVO([], T_wCam_GT(:,:,1:10:size(T_wCam_GT,3)), zeros(3,1), 'Simulation')
disp('Done generating measurements.');
%% Test Inverse Depth
initializedLandmarkIds = [];
observedLandmarks = {};
depthFilterSeeds = {};
meanEucError = 0;
meanDepthError = 0;
meanEucErrorTri = 0;
for camMeasId = 2:length(imageMeasurements)
%Gather Measurements
refKeyPointIds = imageMeasurements(camMeasId-1).landmarkIds;
keyPointIds = imageMeasurements(camMeasId).landmarkIds;
keyPointPixels = imageMeasurements(camMeasId).pixelMeasurements;
refKeyPointPixels = imageMeasurements(camMeasId-1).pixelMeasurements;
matchedRelIndices = simMatchFeatures(refKeyPointIds, keyPointIds);
refKeyPointPixels = refKeyPointPixels(:, matchedRelIndices(:,1));
keyPointPixels = keyPointPixels(:, matchedRelIndices(:,2));
matchedReferenceUnitVectors = normalize(invK*cart2homo(refKeyPointPixels));
matchedCurrentUnitVectors = normalize(invK*cart2homo(keyPointPixels));
matchedKeyPointIds = keyPointIds(matchedRelIndices(:,2), :);
T_rcam = inv(T_wCam_GT(:,:,camMeasId-1))*T_wCam_GT(:,:,camMeasId);
%Use depth filter
%Compute the mean feature depths
featureDepths = computeDepths(inv(T_rcam), matchedReferenceUnitVectors, matchedCurrentUnitVectors);
meanDepth = mean(featureDepths);
obsFromInitializedIds = intersect(matchedKeyPointIds, initializedLandmarkIds);
T_camw = inv(T_wCam_GT(:,:,camMeasId));
landmarks_c = homo2cart(T_camw*cart2homo(landmarks_w));
%Initialize all seeds that are new observations
if ~isempty(observedLandmarks)
newObsIds = setdiff(matchedKeyPointIds, [observedLandmarks(:).id]);
else
newObsIds = matchedKeyPointIds;
end
for kpt_j = 1:length(newObsIds)
oli = length(observedLandmarks) + 1;
observedLandmarks(oli).id = newObsIds(kpt_j);
observedLandmarks(oli).poseKey = (camMeasId-1);
observedLandmarks(oli).featVec = matchedReferenceUnitVectors(:,matchedKeyPointIds==newObsIds(kpt_j));
observedLandmarks(oli).simpleTriang = triangulate2(matchedReferenceUnitVectors(:,matchedKeyPointIds==newObsIds(kpt_j)), matchedCurrentUnitVectors(:,matchedKeyPointIds==newObsIds(kpt_j)), T_rcam(1:3,1:3), T_rcam(1:3,4));
dfi = length(depthFilterSeeds) + 1;
depthFilterSeeds(dfi).mu = 1/meanDepth;
depthFilterSeeds(dfi).sigma2 = 4/36;
depthFilterSeeds(dfi).a = 10;
depthFilterSeeds(dfi).b = 10;
depthFilterSeeds(dfi).z_range = 2;
depthFilterSeeds(dfi).id = newObsIds(kpt_j);
depthFilterSeeds(dfi).trueDepth = norm(landmarks_c(:,newObsIds(kpt_j)));
depthFilterSeeds(dfi).numObs = 1;
end
% landmarks_c(:, matchedKeyPointIds==depthFilterSeeds(1).id)
% depthFilterSeeds(1).sigma2
% estD = depthFilterSeeds(1).mu
% depthFilterSeeds(1).trueDepth
uninitializedIds = setdiff(matchedKeyPointIds, initializedLandmarkIds);
for obs_i = 1:length(uninitializedIds)
%Compute depth uncertainties
kptId = uninitializedIds(obs_i);
firstSeenId = observedLandmarks([observedLandmarks(:).id] == kptId).poseKey;
firstSeenFeatVec = observedLandmarks([observedLandmarks(:).id] == kptId).featVec;
T_camr_feat = inv(T_wCam_GT(:,:,camMeasId))*T_wCam_GT(:,:,firstSeenId);
measFeatureDepth = computeDepths(T_camr_feat, firstSeenFeatVec, matchedCurrentUnitVectors(:, obs_i));
tau = computeTaus(T_camr_feat, matchedCurrentUnitVectors(:, obs_i),measFeatureDepth, K);
invTau = 0.5 * (1.0/max(0.0000001, measFeatureDepth-tau) - 1.0/(measFeatureDepth+tau));
%Update seeds with observations from the current
%image
currentSeedMask = [depthFilterSeeds(:).id] == kptId;
depthFilterSeeds(currentSeedMask) = updateSeeds(depthFilterSeeds(currentSeedMask), 1/measFeatureDepth, invTau^2);
end
%Check for convergence
convergedSeedIdx = [depthFilterSeeds(:).sigma2] < 0.005^2;
convergedInvDepth = [depthFilterSeeds(convergedSeedIdx).mu];
convergedKptIds = [depthFilterSeeds(convergedSeedIdx).id];
convergedTrueDepths = [depthFilterSeeds(convergedSeedIdx).trueDepth];
convergedNumObs = [depthFilterSeeds(convergedSeedIdx).numObs];
if ~isempty(convergedNumObs)
printf('Mean number of observations before convergence: %.5f', mean(convergedNumObs));
printf('Converged Landmarks: %d/%d', length(convergedNumObs), size(landmarks_w,2));
end
%Insert all converged depth estimates as landmarks into
%the ISAM filter
for kpt_i = 1:length(convergedKptIds)
kptId = convergedKptIds(kpt_i);
invD = convergedInvDepth(kpt_i);
ol = observedLandmarks([observedLandmarks(:).id] == kptId);
T_wcam = T_wCam_GT(:,:,ol.poseKey);
kptLoc_w = homo2cart(T_wcam*cart2homo((1/invD)*ol.featVec));
kptLoc_w_tri = homo2cart(T_wcam*cart2homo(ol.simpleTriang));
meanEucError = meanEucError + norm(kptLoc_w - landmarks_w(:,kptId));
meanEucErrorTri = meanEucErrorTri + norm(kptLoc_w_tri - landmarks_w(:,kptId));
meanDepthError = meanDepthError + abs(1/invD - convergedTrueDepths(kpt_i));
initializedLandmarkIds = [initializedLandmarkIds kptId];
end
%Delete all converged seeds
depthFilterSeeds(convergedSeedIdx) = [];
end
meanEucError = meanEucError/length(initializedLandmarkIds)
meanEucErrorTri = meanEucErrorTri/length(initializedLandmarkIds)
meanDepthError = meanDepthError/length(initializedLandmarkIds)