-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_vpace.py
220 lines (190 loc) · 13.1 KB
/
run_vpace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import rl_sandbox.constants as c
import json
import os
import yaml
import configargparse as argparse
import rl_sandbox.auxiliary_rewards.manipulator_learning.panda.play_xyz_state as p_aux
from rl_sandbox.train.train_lfgp_sac import train_lfgp_sac
from rl_sandbox.train.train_dac_sac import train_dac_sac
import rl_sandbox.examples.lfgp.default_configs.eb_common as default_eb
from env_default_configs import get_common_env_defaults
parser = default_eb.get_parser() # this grabs all the default settings, but will be overwritten by anything below
# Settings are included here if their defaults are different from the defaults set by the previous functions
# RL
parser.add_argument('--seed', type=int, default=100, help="Random seed")
parser.add_argument('--device', type=str, default="cuda:0", help="device to use")
parser.add_argument('--max_steps', type=int, required=False,
help="Number of steps to interact with. If not set, set automatically as default based on env config.")
parser.add_argument('--actor_lr', type=float, default=3e-4, help="Actor learning rate.")
parser.add_argument('--no_bootstrap_on_done', action="store_true", help="If set, use dones to prevent bootstrapping on timeouts.")
parser.add_argument('--no_entropy_in_qloss', action="store_true", help="If set, remove entropy from q loss.")
parser.add_argument('--buffer_warmup', type=int, default=5000, help="Buffer warmup before starting training.")
parser.add_argument('--exploration_steps', type=int, default=10000, help="Steps to use random instead of learned policy.")
parser.add_argument('--target_polyak_averaging', type=float, default=1e-3, help="Polyak averaging for updates from target.")
parser.add_argument('--eval_freq', type=int, default=25000, help="Overwrite original default eval frequency.")
parser.add_argument('--save_interval', type=int, default=50000)
parser.add_argument('--buffer_randomize_factor', type=float, default=0.0,
help="Factor to randomize each dimension of buffer data by, after normalizing")
parser.add_argument('--reward_scaling', type=float, default=0.1, help="Reward scaling.")
# env
parser.add_argument('--env_type', type=str, choices=['manipulator_learning', 'sawyer', 'hand_dapg', 'panda_rl_envs'],
default="manipulator_learning")
parser.add_argument('--env_name', type=str, default="PandaPlayInsertTrayXYZState", help="Env name.")
parser.add_argument('--main_task', type=str, default="stack", help="Main task (for play environment)")
parser.add_argument('--main_intention', type=int, default=2, help="The main intention index, only used for multitask.")
parser.add_argument('--control_hz', type=int, choices=[5, 10, 20], default=5, help="Environment control hz.")
parser.add_argument('--sawyer_grip_pos_in_env', action='store_true', help="Include grip pos in sawyer envs.")
parser.add_argument('--sawyer_vel_in_env', action='store_true', help="Include grip pos in sawyer envs.")
parser.add_argument('--sawyer_aux_tasks', type=str, choices=['reach', 'reach,grasp'], default='reach,grasp',
help="Sawyer auxiliary task list.")
parser.add_argument('--hand_dapg_aux_tasks', type=str, choices=['reach', 'reach,grasp'], default='reach,grasp',
help="hand_dapg auxiliary task list.")
parser.add_argument('--hand_dapg_dp_kwargs', type=str,
# default='control_hz:20,common_control_multiplier:.02,responsive_control:False,rotate_frame_ee:True,lower_mass:True,delta_pos:True,include_vel:False',
default='',
help="For overriding the defaults: e.g., 'control_hz:5,common_control_multiplier:.05'.")
parser.add_argument('--panda_rl_envs_kwargs', type=str, default='', help="For overriding default env params.")
# expert data
parser.add_argument('--expert_data_mode', type=str, default="obs_only_no_next", help="options are [obs_act, obs_only, obs_only_no_next].")
parser.add_argument('--expert_top_dir', type=str, default=os.environ['VPACE_TOP_DIR'])
parser.add_argument('--expert_dir_rest', type=str, default='expert_data/1200_per_task')
parser.add_argument('--expert_amounts', type=str, default='200',
help="Expert amounts per buffe for multitask, or for single task, this value can be multiplied"\
" by the number of tasks in the mulitask version.")
parser.add_argument('--expert_randomize_factor', type=float, default=0.1,
help="Factor to randomize each dimension of expert data by, after normalizing")
parser.add_argument('--single_task_multiply_amount', action='store_true',
help="Increase amount of data for single task to num_tasks*multitask per task amount.")
parser.add_argument('--full_traj_expert_filenames', type=str, required=False,
help="Expert filenames for full trajectories, to use in addition to final timesteps.")
parser.add_argument('--ft_expert_dir_rest', type=str, default='expert_data/full_trajectories/200_per_task')
parser.add_argument('--add_default_full_traj', action='store_true',
help="If set, add the default expert trajectories as defined in env_default_configs.py")
# data
parser.add_argument('--top_save_path', type=str, default=os.path.join(os.environ['VPACE_TOP_DIR'], 'results'),
help="Top path for saving results")
parser.add_argument('--exp_name', type=str, required=True, help="String corresponding to the experiment name")
parser.add_argument('--log_interval', type=int, default=1000, help="Log interval for tensorboard.")
# n step
parser.add_argument('--n_step', type=int, default=1, help="If greater than 1, add an n-step loss to the q updates.")
parser.add_argument('--n_step_mode', type=str, default="nth_q_targ",
help="N-step modes: options are: [n_rew_only, sum_pad, nth_q_targ].")
# lfgp/discriminator
parser.add_argument('--reward_model', type=str, choices=['discriminator', 'sqil', 'rce', 'sparse'], default="sqil")
parser.add_argument('--expbuf_critic_share_type', type=str, choices=['share', 'no_share'], default='no_share',
help="Whether all critics learn from all expert buffers or from only their own.")
parser.add_argument('--expbuf_policy_share_type', type=str, choices=['share', 'no_share'], default='no_share',
help="Whether all policies learn from all expert buffers or from only their own.")
parser.add_argument('--expbuf_size_type', type=str, choices=['match_bs', 'fraction'], default='fraction',
help="Fraction means each expert buffer samples batch_size / 2 / num_tasks, match_bs means each samples batch_size."\
" Significantly increases memory usage and processing time, so batch_size should probably be lowered.")
parser.add_argument('--expbuf_model_sample_rate', type=float, default=0.5,
help="Proportion of mini-batch samples that should be expert samples for q/policy training.")
parser.add_argument('--expbuf_model_sample_decay', type=float, default=1.0,
help="Decay rate for expbuf_model_sample_rate. .99999 brings close to 0 at 1M.")
parser.add_argument('--expbuf_model_train_mode', type=str, default='critic_only',
help="Whether expert data trains the critic, or both the actor and critic. Options: [both, critic_only]")
parser.add_argument('--sqil_rce_bootstrap_expert_mode', type=str, choices=['boot', 'no_boot'], default="boot",
help="If boot, sqil and rce bootstrap on expert dones (unlike RCE implementation). no_boot"\
" means no bootstrapping on expert dones (but bootstrapping on non-expert handled by no_bootstrap_on_done)")
parser.add_argument('--q_type', type=str, default="raw", help="Options: [raw, classifier]")
parser.add_argument('--shared_layers', action="store_true", help="Switch to turn on shared layers for q/policy.")
parser.add_argument('--scheduler', type=str, choices=['wrs_plus_handcraft', 'wrs', 'learned', 'no_sched'],
default="wrs_plus_handcraft")
# RCE/SQIL
parser.add_argument('--sqil_policy_reward_label', type=float, choices=[0.0, -1.0], default=-1.0,
help="Reward label for policy data in SQIL, if not using classifier.")
parser.add_argument('--move_obj_filename', type=str, choices=['5_move.gz', '5_move_new.gz'], default='5_move_new.gz',
help="Name of move-object expert data file. new is a better match for 5hz env.")
parser.add_argument('--threshold_discriminator', action="store_true")
parser.add_argument('--q_regularizer', type=str, choices=['vp', 'cql', 'c2f'], default="vp")
parser.add_argument('--rnd', action="store_true", help="Enable RND")
parser.add_argument('--q_over_max_penalty', type=float, default=10.0,
help="If set, a multiplier on the q magnitude over the max possible q based on current expert avg/max, "\
"using reward_scaling and discount_factor")
parser.add_argument('--qomp_num_med_filt', type=int, default=50,
help="For q over max penalty + discriminator reward, how many max discrim values to use for "
"median filter estimate of true discrim max.")
parser.add_argument('--qomp_policy_max_type', type=str, choices=['max_exp', 'avg_exp'], default='avg_exp',
help="Whether to use average expert or max expert for q max penalty.")
parser.add_argument('--sawyer_orig_rce_settings', action='store_true', help="Set frame stack to 1, no grip pos in state.")
# config file
parser.add('--alg_cfg_file', required=False, is_config_file=True,
help="Config file path for overriding many algorithm settings at once.")
args = parser.parse_args()
# check which args were actually set on the command line, because they take precedence over everything
aux_parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS)
for arg, val in vars(args).items():
if isinstance(val, bool):
if val:
aux_parser.add_argument('--'+arg, action='store_true')
else:
aux_parser.add_argument('--'+arg, action='store_false')
else:
aux_parser.add_argument('--'+arg, type=type(val))
cli_args, _ = aux_parser.parse_known_args()
# set to defaults if no custom file
if not args.alg_cfg_file:
cur_dir = os.path.dirname(os.path.abspath(__file__))
yaml_file = os.path.join(cur_dir, 'alg_cfgs', f"{args.reward_model}.yaml")
with open(yaml_file, 'r') as f:
def_cfg_args = yaml.safe_load(f)
for arg, v in def_cfg_args.items():
setattr(args, arg, v)
####### CUSTOM DEFAULTS #######
# can't handle directly in config files
if args.reward_model in [c.RCE, c.SQIL] and args.q_type == 'classifier':
args.expert_critic_weight = 1 - args.discount_factor
args.gpu_buffer = True
args.no_shared_layers = not args.shared_layers # since shared_layers used to be the default
# a few crucial settings different from defaults, specific to envs from RCE paper
if args.env_type in [c.SAWYER, c.HAND_DAPG]:
# matching eval from RCE paper
args.eval_freq = 10000
args.num_evals_per_task = 30
# defaults for best performance, also from RCE paper
args.no_entropy_in_qloss = True
args.n_step = 10
# new for this work
if args.env_type == c.SAWYER and not args.sawyer_orig_rce_settings:
args.frame_stack = 3
args.sawyer_grip_pos_in_env = True
if args.sawyer_orig_rce_settings:
args.expert_randomize_factor = 0.0
##### ENV-SPECIFIC SETTINGS, DEFAULT EXPERT DATA LOCATIONS ######
get_common_env_defaults(args)
##### CFG FILE HANDLING ######
# if custom file, it should take precedence over any setting options from above, but not moreso than command line
if args.alg_cfg_file:
with open(args.alg_cfg_file, 'r') as f:
file_cfg_args = yaml.safe_load(f)
for arg, v in file_cfg_args.items():
setattr(args, arg, v)
# finally, set all args from command line
for arg, v in vars(cli_args).items():
setattr(args, arg, v)
if arg == 'max_steps': # not going to ever use memory size smaller than max steps
setattr(args, 'memory_size', v)
# append to exp_name to make sorting easier later
if args.sawyer_orig_rce_settings: args.exp_name += "_rce_orig"
assert args.memory_size == args.max_steps, \
f"memory size set to {args.memory_size}, max steps to {args.max_steps}, all our testing was done with them equal."
# get the dictionary
experiment_setting = default_eb.get_settings(args=args)
# set expert amounts based on number of tasks -- has to be done after populating dictionary because main_task
# can be fixed by aliases
if args.single_task and experiment_setting[c.ENV_SETTING][c.ENV_TYPE] == c.MANIPULATOR_LEARNING \
and args.single_task_multiply_amount:
aux_reward = p_aux.PandaPlayXYZStateAuxiliaryReward(
experiment_setting[c.ENV_SETTING][c.KWARGS][c.MAIN_TASK], include_main=False)
num_tasks = aux_reward.num_auxiliary_rewards
orig_amounts = experiment_setting[c.EXPERT_AMOUNT]
print("-----------------------")
print(f"For single task run, multiplying arg {orig_amounts} amount of data by {num_tasks} "\
f"aux tasks, final amount {orig_amounts * num_tasks}")
print("-----------------------")
experiment_setting[c.EXPERT_AMOUNT] = orig_amounts * num_tasks
if args.single_task:
train_dac_sac(experiment_config=experiment_setting)
else:
train_lfgp_sac(experiment_config=experiment_setting)