-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_bert.py
231 lines (181 loc) · 8.01 KB
/
train_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import pandas as pd
import numpy as np
from transformers import AutoModel, AutoTokenizer, AutoConfig
import torch.nn as nn
import torch
from transformers.optimization import get_cosine_schedule_with_warmup
from kobert_tokenizer import KoBERTTokenizer
from torch.utils.data import DataLoader, Dataset, Subset
from sklearn.metrics.pairwise import cosine_similarity
from transformers import BertModel, BertPreTrainedModel
from sklearn.model_selection import KFold
from sklearn.metrics.pairwise import cosine_similarity
from tqdm import tqdm
import random
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"
#params
batch_size = 8
EPOCHS = 1
PATIENT = 3
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#fix seed
seed = 511
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# #tensorboard_logger_start
# from torch.utils.tensorboard import SummaryWriter
# writer = SummaryWriter('./runs/clickbait_kobert')
# tb_logging_rate = 100
#Load dataframe
df_train = pd.read_csv('./data/Train_Part1.csv')
df_test = pd.read_csv('./data/Test_Part1.csv')
#define Dataset
class CustomDataset(Dataset) :
def __init__(self, dataframe, tokenizer, max_length) :
self.dataframe = dataframe
self.tokenizer = tokenizer
self.max_length = max_length
def __getitem__(self, x) :
data = self.dataframe.loc[x].title + '[CLS][PAD][PAD]' + self.dataframe.loc[x].content
data = self.tokenize(data)
label = torch.tensor(self.dataframe.loc[x].label)
input_ids = data.input_ids.squeeze()
attention_mask = data.attention_mask.squeeze()
return input_ids, attention_mask, label
def tokenize(self, data) :
token = self.tokenizer(data, padding = 'max_length', max_length = self.max_length, truncation = True, return_tensors = "pt")
del token['token_type_ids']
return token
def __len__(self) :
return len(self.dataframe)
#define Model
class Model(BertPreTrainedModel) :
def __init__(self, output_classes, config) :
super().__init__(config)
self.bert = BertModel.from_pretrained("skt/kobert-base-v1", config=config)
self.output_layer = nn.Linear(config.hidden_size, output_classes)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids, attention_mask) :
hidden_state = self.bert(input_ids = input_ids,
attention_mask = attention_mask)
data = hidden_state[1]
output = self.dropout(data)
output = self.output_layer(output)
return output
tokenizer = KoBERTTokenizer.from_pretrained('skt/kobert-base-v1', last_hidden_states=True)
conf = AutoConfig.from_pretrained("skt/kobert-base-v1")
model = Model(output_classes = 2, config = conf).to(device)
train_dataset = CustomDataset(dataframe = df_train,
tokenizer = tokenizer,
max_length = 512)
test_dataset = CustomDataset(dataframe = df_test,
tokenizer = tokenizer,
max_length = 512)
test_dataloader = DataLoader(test_dataset, batch_size = batch_size, num_workers = 4, shuffle = False)
loss_fn = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.AdamW(
params = filter(lambda p: p.requires_grad, model.parameters()),
lr = 0.00001,
weight_decay = 0.0005
)
warmup_ratio = 0.1
t_total = len(df_train) * EPOCHS * 4
warmup_step = int(t_total * warmup_ratio)
scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps = warmup_step, num_training_steps = t_total)
fold = KFold(n_splits = 5, shuffle = True, random_state = seed)
def acc_fn(y_pred, y_true):
accuracy = torch.eq(y_pred, y_true).sum().item()/len(y_pred)
return accuracy
def train_func(model, dataloader, optim, loss_fn, scheduler) :
t_loss, t_acc = 0, 0
model.train()
for batch, (input_ids, attention_mask, label) in enumerate(tqdm(dataloader)) :
input_ids, attention_mask, label = input_ids.to(device), attention_mask.to(device), label.to(device)
outputs = model(input_ids = input_ids, attention_mask = attention_mask).to(device)
outputs = torch.softmax(outputs, dim=1).to(device)
loss = loss_fn(outputs, label)
acc = acc_fn(outputs.argmax(dim=1).to(device), label)
optim.zero_grad()
loss.backward()
optim.step()
scheduler.step()
t_loss += loss.item()
t_acc += acc
t_loss /= len(dataloader)
t_acc /= len(dataloader)
return t_loss, t_acc
def eval_func(model, dataloader, loss_fn) :
e_loss, e_acc = 0, 0
model.eval()
with torch.no_grad() :
for batch, (input_ids, attention_mask, label) in enumerate(tqdm(dataloader)) :
input_ids, attention_mask, label = input_ids.to(device), attention_mask.to(device), label.to(device)
outputs = model(input_ids = input_ids, attention_mask = attention_mask).to(device)
outputs = torch.softmax(outputs, dim=1).to(device)
loss = loss_fn(outputs, label)
acc = acc_fn(outputs.argmax(dim=1).to(device), label)
e_loss += loss.item()
e_acc += acc
e_loss /= len(dataloader)
e_acc /= len(dataloader)
return e_loss, e_acc
def train(train_dataset , model, epochs, optim, loss_fn, patient, scheduler) :
print('<<TRAIN>>')
tot_tr_loss, tot_tr_acc = [], []
tot_val_loss, tot_val_acc = [], []
for i, (train_idx, val_idx) in enumerate(fold.split(train_dataset)) :
min_val_loss = 2
n_patience = 0
train_ds = Subset(train_dataset, train_idx)
val_ds = Subset(train_dataset, val_idx)
train_dl = DataLoader(train_ds, batch_size = batch_size, shuffle = True, num_workers = 4)
val_dl = DataLoader(val_ds, batch_size = batch_size, shuffle = False, num_workers = 4)
for epoch in range(epochs) :
print(f'==FOLD {i} / EPOCH {epoch}==')
train_loss, train_acc = train_func(model, train_dl, optim, loss_fn, scheduler)
val_loss, val_acc = eval_func(model, val_dl, loss_fn)
print(f'Train_loss : {train_loss} || Train_acc : {train_acc}\n Val_loss : {val_loss} || Val_acc : {val_acc}')
if np.round(min_val_loss, 5) > np.round(val_loss, 5) :
min_val_loss = val_loss
n_patience = 0
print(f'Save the best params with val_loss:{val_loss:.4f}, val_acc:{val_acc:.4f}')
torch.save(model.state_dict(), f'./models/best_w_{i}.pth')
else :
n_patience += 1
if n_patience >= patient :
print('Early Stopping')
break
tot_tr_loss.append(train_loss)
tot_tr_acc.append(train_acc)
tot_val_loss.append(val_loss)
tot_val_acc.append(val_acc)
print(f'<<FOLD {i}>>')
print(f"\t Train loss {np.mean(tot_tr_loss):.4f} | acc {np.mean(tot_tr_acc):.4f}")
print(f"\t Valid loss {np.mean(tot_val_loss):.4f} | acc {np.mean(tot_val_acc):.4f}")
# #tensorboard_logger_close
# writer.close()
def test(test_dataloader, model , loss_fn) :
print("<<TEST>>")
test_loss, test_acc = [],[]
for i in range(5):
model.load_state_dict(torch.load(f'./models/best_w_{i}.pth'))
loss, acc = eval_func(model, test_dataloader, loss_fn)
print(f"\t <<FOLD{i}>> Test loss {loss} | acc {acc}")
test_loss.append(loss)
test_acc.append(acc)
print(f"Average loss {np.mean(test_loss):.4f} | acc {np.mean(test_acc):.4f}")
print(f"Variance loss {np.var(test_loss):.4f} | acc {np.var(test_acc):.4f}")
train(train_dataset = train_dataset,
model = model,
epochs = EPOCHS,
optim = optimizer,
loss_fn = loss_fn,
patient = PATIENT,
scheduler = scheduler)
test(test_dataloader = test_dataloader,
model = model,
loss_fn = loss_fn)