forked from SciSharp/TensorFlow.NET
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DigitRecognitionCNN.cs
338 lines (287 loc) · 13.7 KB
/
DigitRecognitionCNN.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
/*****************************************************************************
Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
******************************************************************************/
using NumSharp;
using System;
using System.Diagnostics;
using Tensorflow;
using Tensorflow.Hub;
using static Tensorflow.Binding;
namespace TensorFlowNET.Examples
{
/// <summary>
/// Convolutional Neural Network classifier for Hand Written Digits
/// CNN architecture with two convolutional layers, followed by two fully-connected layers at the end.
/// Use Stochastic Gradient Descent (SGD) optimizer.
/// http://www.easy-tf.com/tf-tutorials/convolutional-neural-nets-cnns/cnn1
/// </summary>
public class DigitRecognitionCNN : IExample
{
public bool Enabled { get; set; } = true;
public bool IsImportingGraph { get; set; } = false;
public string Name => "MNIST CNN";
string logs_path = "logs";
const int img_h = 28, img_w = 28; // MNIST images are 28x28
int n_classes = 10; // Number of classes, one class per digit
int n_channels = 1;
// Hyper-parameters
int epochs = 5; // accuracy > 98%
int batch_size = 100;
float learning_rate = 0.001f;
Datasets<MnistDataSet> mnist;
// Network configuration
// 1st Convolutional Layer
int filter_size1 = 5; // Convolution filters are 5 x 5 pixels.
int num_filters1 = 16; // There are 16 of these filters.
int stride1 = 1; // The stride of the sliding window
// 2nd Convolutional Layer
int filter_size2 = 5; // Convolution filters are 5 x 5 pixels.
int num_filters2 = 32;// There are 32 of these filters.
int stride2 = 1; // The stride of the sliding window
// Fully-connected layer.
int h1 = 128; // Number of neurons in fully-connected layer.
Tensor x, y;
Tensor loss, accuracy, cls_prediction;
Operation optimizer;
int display_freq = 100;
float accuracy_test = 0f;
float loss_test = 1f;
NDArray x_train, y_train;
NDArray x_valid, y_valid;
NDArray x_test, y_test;
public bool Run()
{
PrepareData();
BuildGraph();
using (var sess = tf.Session())
{
Train(sess);
Test(sess);
}
return loss_test < 0.05 && accuracy_test > 0.98;
}
public Graph BuildGraph()
{
var graph = new Graph().as_default();
tf_with(tf.name_scope("Input"), delegate
{
// Placeholders for inputs (x) and outputs(y)
x = tf.placeholder(tf.float32, shape: (-1, img_h, img_w, n_channels), name: "X");
y = tf.placeholder(tf.float32, shape: (-1, n_classes), name: "Y");
});
var conv1 = conv_layer(x, filter_size1, num_filters1, stride1, name: "conv1");
var pool1 = max_pool(conv1, ksize: 2, stride: 2, name: "pool1");
var conv2 = conv_layer(pool1, filter_size2, num_filters2, stride2, name: "conv2");
var pool2 = max_pool(conv2, ksize: 2, stride: 2, name: "pool2");
var layer_flat = flatten_layer(pool2);
var fc1 = fc_layer(layer_flat, h1, "FC1", use_relu: true);
var output_logits = fc_layer(fc1, n_classes, "OUT", use_relu: false);
tf_with(tf.variable_scope("Train"), delegate
{
tf_with(tf.variable_scope("Loss"), delegate
{
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels: y, logits: output_logits), name: "loss");
});
tf_with(tf.variable_scope("Optimizer"), delegate
{
optimizer = tf.train.AdamOptimizer(learning_rate: learning_rate, name: "Adam-op").minimize(loss);
});
tf_with(tf.variable_scope("Accuracy"), delegate
{
var correct_prediction = tf.equal(tf.argmax(output_logits, 1), tf.argmax(y, 1), name: "correct_pred");
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name: "accuracy");
});
tf_with(tf.variable_scope("Prediction"), delegate
{
cls_prediction = tf.argmax(output_logits, axis: 1, name: "predictions");
});
});
return graph;
}
public void Train(Session sess)
{
// Number of training iterations in each epoch
var num_tr_iter = y_train.shape[0] / batch_size;
var init = tf.global_variables_initializer();
sess.run(init);
float loss_val = 100.0f;
float accuracy_val = 0f;
var sw = new Stopwatch();
sw.Start();
foreach (var epoch in range(epochs))
{
print($"Training epoch: {epoch + 1}");
// Randomly shuffle the training data at the beginning of each epoch
(x_train, y_train) = mnist.Randomize(x_train, y_train);
foreach (var iteration in range(num_tr_iter))
{
var start = iteration * batch_size;
var end = (iteration + 1) * batch_size;
var (x_batch, y_batch) = mnist.GetNextBatch(x_train, y_train, start, end);
// Run optimization op (backprop)
sess.run(optimizer, (x, x_batch), (y, y_batch));
if (iteration % display_freq == 0)
{
// Calculate and display the batch loss and accuracy
var result = sess.run(new[] { loss, accuracy }, new FeedItem(x, x_batch), new FeedItem(y, y_batch));
loss_val = result[0];
accuracy_val = result[1];
print($"iter {iteration.ToString("000")}: Loss={loss_val.ToString("0.0000")}, Training Accuracy={accuracy_val.ToString("P")} {sw.ElapsedMilliseconds}ms");
sw.Restart();
}
}
// Run validation after every epoch
(loss_val, accuracy_val) = sess.run((loss, accuracy), (x, x_valid), (y, y_valid));
print("---------------------------------------------------------");
print($"Epoch: {epoch + 1}, validation loss: {loss_val.ToString("0.0000")}, validation accuracy: {accuracy_val.ToString("P")}");
print("---------------------------------------------------------");
}
}
public void Test(Session sess)
{
(loss_test, accuracy_test) = sess.run((loss, accuracy), (x, x_test), (y, y_test));
print("---------------------------------------------------------");
print($"Test loss: {loss_test.ToString("0.0000")}, test accuracy: {accuracy_test.ToString("P")}");
print("---------------------------------------------------------");
}
/// <summary>
/// Create a 2D convolution layer
/// </summary>
/// <param name="x">input from previous layer</param>
/// <param name="filter_size">size of each filter</param>
/// <param name="num_filters">number of filters(or output feature maps)</param>
/// <param name="stride">filter stride</param>
/// <param name="name">layer name</param>
/// <returns>The output array</returns>
private Tensor conv_layer(Tensor x, int filter_size, int num_filters, int stride, string name)
{
return tf_with(tf.variable_scope(name), delegate {
var num_in_channel = x.shape[x.NDims - 1];
var shape = new[] { filter_size, filter_size, num_in_channel, num_filters };
var W = weight_variable("W", shape);
// var tf.summary.histogram("weight", W);
var b = bias_variable("b", new[] { num_filters });
// tf.summary.histogram("bias", b);
var layer = tf.nn.conv2d(x, W,
strides: new[] { 1, stride, stride, 1 },
padding: "SAME");
layer += b;
return tf.nn.relu(layer);
});
}
/// <summary>
/// Create a max pooling layer
/// </summary>
/// <param name="x">input to max-pooling layer</param>
/// <param name="ksize">size of the max-pooling filter</param>
/// <param name="stride">stride of the max-pooling filter</param>
/// <param name="name">layer name</param>
/// <returns>The output array</returns>
private Tensor max_pool(Tensor x, int ksize, int stride, string name)
{
return tf.nn.max_pool(x,
ksize: new[] { 1, ksize, ksize, 1 },
strides: new[] { 1, stride, stride, 1 },
padding: "SAME",
name: name);
}
/// <summary>
/// Flattens the output of the convolutional layer to be fed into fully-connected layer
/// </summary>
/// <param name="layer">input array</param>
/// <returns>flattened array</returns>
private Tensor flatten_layer(Tensor layer)
{
return tf_with(tf.variable_scope("Flatten_layer"), delegate
{
var layer_shape = layer.TensorShape;
var num_features = layer_shape[new Slice(1, 4)].size;
var layer_flat = tf.reshape(layer, new[] { -1, num_features });
return layer_flat;
});
}
/// <summary>
/// Create a weight variable with appropriate initialization
/// </summary>
/// <param name="name"></param>
/// <param name="shape"></param>
/// <returns></returns>
private RefVariable weight_variable(string name, int[] shape)
{
var initer = tf.truncated_normal_initializer(stddev: 0.01f);
return tf.get_variable(name,
dtype: tf.float32,
shape: shape,
initializer: initer);
}
/// <summary>
/// Create a bias variable with appropriate initialization
/// </summary>
/// <param name="name"></param>
/// <param name="shape"></param>
/// <returns></returns>
private RefVariable bias_variable(string name, int[] shape)
{
var initial = tf.constant(0f, shape: shape, dtype: tf.float32);
return tf.get_variable(name,
dtype: tf.float32,
initializer: initial);
}
/// <summary>
/// Create a fully-connected layer
/// </summary>
/// <param name="x">input from previous layer</param>
/// <param name="num_units">number of hidden units in the fully-connected layer</param>
/// <param name="name">layer name</param>
/// <param name="use_relu">boolean to add ReLU non-linearity (or not)</param>
/// <returns>The output array</returns>
private Tensor fc_layer(Tensor x, int num_units, string name, bool use_relu = true)
{
return tf_with(tf.variable_scope(name), delegate
{
var in_dim = x.shape[1];
var W = weight_variable("W_" + name, shape: new[] { in_dim, num_units });
var b = bias_variable("b_" + name, new[] { num_units });
var layer = tf.matmul(x, W) + b;
if (use_relu)
layer = tf.nn.relu(layer);
return layer;
});
}
public void PrepareData()
{
mnist = MnistModelLoader.LoadAsync(".resources/mnist", oneHot: true, showProgressInConsole: true).Result;
(x_train, y_train) = Reformat(mnist.Train.Data, mnist.Train.Labels);
(x_valid, y_valid) = Reformat(mnist.Validation.Data, mnist.Validation.Labels);
(x_test, y_test) = Reformat(mnist.Test.Data, mnist.Test.Labels);
print("Size of:");
print($"- Training-set:\t\t{len(mnist.Train.Data)}");
print($"- Validation-set:\t{len(mnist.Validation.Data)}");
}
/// <summary>
/// Reformats the data to the format acceptable for convolutional layers
/// </summary>
/// <param name="x"></param>
/// <param name="y"></param>
/// <returns></returns>
private (NDArray, NDArray) Reformat(NDArray x, NDArray y)
{
var (img_size, num_ch, num_class) = (np.sqrt(x.shape[1]).astype(np.int32), 1, len(np.unique(np.argmax(y, 1))));
var dataset = x.reshape(x.shape[0], img_size, img_size, num_ch).astype(np.float32);
//y[0] = np.arange(num_class) == y[0];
//var labels = (np.arange(num_class) == y.reshape(y.shape[0], 1, y.shape[1])).astype(np.float32);
return (dataset, y);
}
public Graph ImportGraph() => throw new NotImplementedException();
public void Predict(Session sess) => throw new NotImplementedException();
}
}