-
-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathdetect.py
421 lines (377 loc) · 22.6 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""
Run YOLOv3 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
Usage - sources:
$ python detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
'https://youtu.be/LNwODJXcvt4' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
Usage - formats:
$ python detect.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS-only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
"""
import argparse
import os
import platform
import sys
from pathlib import Path
import torch
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv3 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from ultralytics.utils.plotting import Annotator, colors, save_one_box
from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (
LOGGER,
Profile,
check_file,
check_img_size,
check_imshow,
check_requirements,
colorstr,
cv2,
increment_path,
non_max_suppression,
print_args,
scale_boxes,
strip_optimizer,
xyxy2xywh,
)
from utils.torch_utils import select_device, smart_inference_mode
@smart_inference_mode()
def run(
weights=ROOT / "yolov5s.pt", # model path or triton URL
source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam)
data=ROOT / "data/coco128.yaml", # dataset.yaml path
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / "runs/detect", # save results to project/name
name="exp", # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
vid_stride=1, # video frame-rate stride
):
"""
Run YOLOv3 detection inference on various input sources such as images, videos, streams, and YouTube URLs.
Args:
weights (str | Path): Path to the model weights file or a Triton URL (default: 'yolov5s.pt').
source (str | Path): Source of input data such as a file, directory, URL, glob pattern, or device identifier
(default: 'data/images').
data (str | Path): Path to the dataset YAML file (default: 'data/coco128.yaml').
imgsz (tuple[int, int]): Inference size as a tuple (height, width) (default: (640, 640)).
conf_thres (float): Confidence threshold for detection (default: 0.25).
iou_thres (float): Intersection Over Union (IOU) threshold for Non-Max Suppression (NMS) (default: 0.45).
max_det (int): Maximum number of detections per image (default: 1000).
device (str): CUDA device identifier, e.g., '0', '0,1,2,3', or 'cpu' (default: '').
view_img (bool): Whether to display results during inference (default: False).
save_txt (bool): Whether to save detection results to text files (default: False).
save_conf (bool): Whether to save detection confidences in the text labels (default: False).
save_crop (bool): Whether to save cropped detection boxes (default: False).
nosave (bool): Whether to prevent saving images or videos with detections (default: False).
classes (list[int] | None): List of class indices to filter, e.g., [0, 2, 3] (default: None).
agnostic_nms (bool): Whether to perform class-agnostic NMS (default: False).
augment (bool): Whether to apply augmented inference (default: False).
visualize (bool): Whether to visualize feature maps (default: False).
update (bool): Whether to update all models (default: False).
project (str | Path): Path to the project directory where results will be saved (default: 'runs/detect').
name (str): Name for the specific run within the project directory (default: 'exp').
exist_ok (bool): Whether to allow existing project/name directory without incrementing run index (default: False).
line_thickness (int): Thickness of bounding box lines in pixels (default: 3).
hide_labels (bool): Whether to hide labels in the results (default: False).
hide_conf (bool): Whether to hide confidences in the results (default: False).
half (bool): Whether to use half-precision (FP16) for inference (default: False).
dnn (bool): Whether to use OpenCV DNN for ONNX inference (default: False).
vid_stride (int): Stride for video frame rate (default: 1).
Returns:
None
Notes:
This function supports a variety of input sources such as image files, video files, directories, URL patterns,
webcam streams, and YouTube links. It also supports multiple model formats including PyTorch, ONNX, OpenVINO,
TensorRT, CoreML, TensorFlow, PaddlePaddle, and others. The results can be visualized in real-time or saved to
specified directories. Use command-line arguments to modify the behavior of the function.
Examples:
```python
# Run YOLOv3 inference on an image
run(weights='yolov5s.pt', source='data/images/bus.jpg')
# Run YOLOv3 inference on a video
run(weights='yolov5s.pt', source='data/videos/video.mp4', view_img=True)
# Run YOLOv3 inference on a webcam
run(weights='yolov5s.pt', source='0', view_img=True)
```
"""
source = str(source)
save_img = not nosave and not source.endswith(".txt") # save inference images
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
screenshot = source.lower().startswith("screen")
if is_url and is_file:
source = check_file(source) # download
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
# Dataloader
bs = 1 # batch_size
if webcam:
view_img = check_imshow(warn=True)
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
bs = len(dataset)
elif screenshot:
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
for path, im, im0s, vid_cap, s in dataset:
with dt[0]:
im = torch.from_numpy(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
# Inference
with dt[1]:
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
pred = model(im, augment=augment, visualize=visualize)
# NMS
with dt[2]:
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
# Second-stage classifier (optional)
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
# Process predictions
for i, det in enumerate(pred): # per image
seen += 1
if webcam: # batch_size >= 1
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f"{i}: "
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg
txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}") # im.txt
s += "{:g}x{:g} ".format(*im.shape[2:]) # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(f"{txt_path}.txt", "a") as f:
f.write(("%g " * len(line)).rstrip() % line + "\n")
if save_img or save_crop or view_img: # Add bbox to image
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}")
annotator.box_label(xyxy, label, color=colors(c, True))
if save_crop:
save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True)
# Stream results
im0 = annotator.result()
if view_img:
if platform.system() == "Linux" and p not in windows:
windows.append(p)
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == "image":
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix(".mp4")) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
vid_writer[i].write(im0)
# Print time (inference-only)
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1e3:.1f}ms")
# Print results
t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
def parse_opt():
"""
Parses and returns command-line options for running YOLOv3 model detection.
Args:
--weights (list[str]): Model path or Triton URL. Default: ROOT / "yolov3-tiny.pt".
--source (str): Input data source like file/dir/URL/glob/screen/0(webcam). Default: ROOT / "data/images".
--data (str): Optional path to dataset.yaml. Default: ROOT / "data/coco128.yaml".
--imgsz (list[int]): Inference size as height, width. Accepts multiple values. Default: [640].
--conf-thres (float): Confidence threshold for predictions. Default: 0.25.
--iou-thres (float): IoU threshold for Non-Maximum Suppression (NMS). Default: 0.45.
--max-det (int): Maximum number of detections per image. Default: 1000.
--device (str): CUDA device identifier, e.g. "0" or "0,1,2,3" or "cpu". Default: "" (auto-select).
--view-img (bool): Display results. Default: False.
--save-txt (bool): Save results to *.txt files. Default: False.
--save-conf (bool): Save confidence scores in text labels. Default: False.
--save-crop (bool): Save cropped prediction boxes. Default: False.
--nosave (bool): Do not save images/videos. Default: False.
--classes (list[int] | None): Filter results by class, e.g. [0, 2, 3]. Default: None.
--agnostic-nms (bool): Perform class-agnostic NMS. Default: False.
--augment (bool): Apply augmented inference. Default: False.
--visualize (bool): Visualize feature maps. Default: False.
--update (bool): Update all models. Default: False.
--project (str): Directory to save results; results saved to "project/name". Default: ROOT / "runs/detect".
--name (str): Name of the specific run; results saved to "project/name". Default: "exp".
--exist-ok (bool): Allow results to be saved in an existing directory without incrementing. Default: False.
--line-thickness (int): Bounding box line thickness in pixels. Default: 3.
--hide-labels (bool): Hide labels on detections. Default: False.
--hide-conf (bool): Hide confidence scores on labels. Default: False.
--half (bool): Use FP16 half-precision inference. Default: False.
--dnn (bool): Use OpenCV DNN backend for ONNX inference. Default: False.
--vid-stride (int): Frame-rate stride for video input. Default: 1.
Returns:
argparse.Namespace: Parsed command-line arguments for YOLOv3 inference configurations.
Example:
```python
options = parse_opt()
run(**vars(options))
```
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--weights", nargs="+", type=str, default=ROOT / "yolov3-tiny.pt", help="model path or triton URL"
)
parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path")
parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w")
parser.add_argument("--conf-thres", type=float, default=0.25, help="confidence threshold")
parser.add_argument("--iou-thres", type=float, default=0.45, help="NMS IoU threshold")
parser.add_argument("--max-det", type=int, default=1000, help="maximum detections per image")
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
parser.add_argument("--view-img", action="store_true", help="show results")
parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")
parser.add_argument("--save-crop", action="store_true", help="save cropped prediction boxes")
parser.add_argument("--nosave", action="store_true", help="do not save images/videos")
parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3")
parser.add_argument("--agnostic-nms", action="store_true", help="class-agnostic NMS")
parser.add_argument("--augment", action="store_true", help="augmented inference")
parser.add_argument("--visualize", action="store_true", help="visualize features")
parser.add_argument("--update", action="store_true", help="update all models")
parser.add_argument("--project", default=ROOT / "runs/detect", help="save results to project/name")
parser.add_argument("--name", default="exp", help="save results to project/name")
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
parser.add_argument("--line-thickness", default=3, type=int, help="bounding box thickness (pixels)")
parser.add_argument("--hide-labels", default=False, action="store_true", help="hide labels")
parser.add_argument("--hide-conf", default=False, action="store_true", help="hide confidences")
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(vars(opt))
return opt
def main(opt):
"""
Entry point for running the YOLO model; checks requirements and calls `run` with parsed options.
Args:
opt (argparse.Namespace): Parsed command-line options, which include:
- weights (str | list of str): Path to the model weights or Triton server URL.
- source (str): Input source, can be a file, directory, URL, glob, screen, or webcam index.
- data (str): Path to the dataset configuration file (.yaml).
- imgsz (tuple of int): Inference image size as (height, width).
- conf_thres (float): Confidence threshold for detections.
- iou_thres (float): Intersection over Union (IoU) threshold for Non-Maximum Suppression (NMS).
- max_det (int): Maximum number of detections per image.
- device (str): Device to run inference on; options are CUDA device id(s) or 'cpu'
- view_img (bool): Flag to display inference results.
- save_txt (bool): Save detection results in .txt format.
- save_conf (bool): Save detection confidences in .txt labels.
- save_crop (bool): Save cropped bounding box predictions.
- nosave (bool): Do not save images/videos with detections.
- classes (list of int): Filter results by class, e.g., --class 0 2 3.
- agnostic_nms (bool): Use class-agnostic NMS.
- augment (bool): Enable augmented inference.
- visualize (bool): Visualize feature maps.
- update (bool): Update the model during inference.
- project (str): Directory to save results.
- name (str): Name for the results directory.
- exist_ok (bool): Allow existing project/name directories without incrementing.
- line_thickness (int): Thickness of bounding box lines.
- hide_labels (bool): Hide class labels on bounding boxes.
- hide_conf (bool): Hide confidence scores on bounding boxes.
- half (bool): Use FP16 half-precision inference.
- dnn (bool): Use OpenCV DNN backend for ONNX inference.
- vid_stride (int): Video frame-rate stride.
Returns:
None
Example:
```python
if __name__ == "__main__":
opt = parse_opt()
main(opt)
```
Notes:
Run this function as the entry point for using YOLO for object detection on a variety of input sources such as
images, videos, directories, webcams, streams, etc. This function ensures all requirements are checked and
subsequently initiates the detection process by calling the `run` function with appropriate options.
"""
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)