-
-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathbenchmarks.py
308 lines (264 loc) · 13.7 KB
/
benchmarks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""
Run YOLOv3 benchmarks on all supported export formats.
Format | `export.py --include` | Model
--- | --- | ---
PyTorch | - | yolov5s.pt
TorchScript | `torchscript` | yolov5s.torchscript
ONNX | `onnx` | yolov5s.onnx
OpenVINO | `openvino` | yolov5s_openvino_model/
TensorRT | `engine` | yolov5s.engine
CoreML | `coreml` | yolov5s.mlmodel
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
TensorFlow GraphDef | `pb` | yolov5s.pb
TensorFlow Lite | `tflite` | yolov5s.tflite
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
TensorFlow.js | `tfjs` | yolov5s_web_model/
Requirements:
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
Usage:
$ python benchmarks.py --weights yolov5s.pt --img 640
"""
import argparse
import platform
import sys
import time
from pathlib import Path
import pandas as pd
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv3 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
# ROOT = ROOT.relative_to(Path.cwd()) # relative
import export
from models.experimental import attempt_load
from models.yolo import SegmentationModel
from segment.val import run as val_seg
from utils import notebook_init
from utils.general import LOGGER, check_yaml, file_size, print_args
from utils.torch_utils import select_device
from val import run as val_det
def run(
weights=ROOT / "yolov5s.pt", # weights path
imgsz=640, # inference size (pixels)
batch_size=1, # batch size
data=ROOT / "data/coco128.yaml", # dataset.yaml path
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
half=False, # use FP16 half-precision inference
test=False, # test exports only
pt_only=False, # test PyTorch only
hard_fail=False, # throw error on benchmark failure
):
"""
Run YOLOv3 benchmarks on multiple export formats and validate performance metrics.
Args:
weights (str | Path): Path to the weights file. Defaults to 'yolov5s.pt'.
imgsz (int): Inference image size in pixels. Defaults to 640.
batch_size (int): Batch size for inference. Defaults to 1.
data (str | Path): Path to the dataset configuration file (dataset.yaml). Defaults to 'data/coco128.yaml'.
device (str): Device to be used for inference, e.g., '0' or '0,1,2,3' for GPU or 'cpu' for CPU. Defaults to ''.
half (bool): Use FP16 half-precision for inference. Defaults to False.
test (bool): Test exports only without running benchmarks. Defaults to False.
pt_only (bool): Run benchmarks only for PyTorch format. Defaults to False.
hard_fail (bool): Raise an error if any benchmark test fails. Defaults to False.
Returns:
None
Notes:
This function iterates over multiple export formats, performs the export, and then validates the model's performance
using appropriate validation functions for detection and segmentation models. The results are logged, and optionally,
benchmarks can be configured to raise errors on failures using the `hard_fail` argument.
Examples:
```python
# Run benchmarks on the default 'yolov5s.pt' model with an image size of 640 pixels
run()
# Run benchmarks on a specific model with GPU and half-precision enabled
run(weights='custom_model.pt', device='0', half=True)
# Test only PyTorch export
run(pt_only=True)
```
"""
y, t = [], time.time()
device = select_device(device)
model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc.
for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
try:
assert i not in (9, 10), "inference not supported" # Edge TPU and TF.js are unsupported
assert i != 5 or platform.system() == "Darwin", "inference only supported on macOS>=10.13" # CoreML
if "cpu" in device.type:
assert cpu, "inference not supported on CPU"
if "cuda" in device.type:
assert gpu, "inference not supported on GPU"
# Export
if f == "-":
w = weights # PyTorch format
else:
w = export.run(
weights=weights, imgsz=[imgsz], include=[f], batch_size=batch_size, device=device, half=half
)[-1] # all others
assert suffix in str(w), "export failed"
# Validate
if model_type == SegmentationModel:
result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half)
metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
else: # DetectionModel:
result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half)
metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls))
speed = result[2][1] # times (preprocess, inference, postprocess)
y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference
except Exception as e:
if hard_fail:
assert type(e) is AssertionError, f"Benchmark --hard-fail for {name}: {e}"
LOGGER.warning(f"WARNING ⚠️ Benchmark failure for {name}: {e}")
y.append([name, None, None, None]) # mAP, t_inference
if pt_only and i == 0:
break # break after PyTorch
# Print results
LOGGER.info("\n")
parse_opt()
notebook_init() # print system info
c = ["Format", "Size (MB)", "mAP50-95", "Inference time (ms)"] if map else ["Format", "Export", "", ""]
py = pd.DataFrame(y, columns=c)
LOGGER.info(f"\nBenchmarks complete ({time.time() - t:.2f}s)")
LOGGER.info(str(py if map else py.iloc[:, :2]))
if hard_fail and isinstance(hard_fail, str):
metrics = py["mAP50-95"].array # values to compare to floor
floor = eval(hard_fail) # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
assert all(x > floor for x in metrics if pd.notna(x)), f"HARD FAIL: mAP50-95 < floor {floor}"
return py
def test(
weights=ROOT / "yolov5s.pt", # weights path
imgsz=640, # inference size (pixels)
batch_size=1, # batch size
data=ROOT / "data/coco128.yaml", # dataset.yaml path
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
half=False, # use FP16 half-precision inference
test=False, # test exports only
pt_only=False, # test PyTorch only
hard_fail=False, # throw error on benchmark failure
):
"""
Run YOLOv3 export tests for various formats and log the results, including export success status.
Args:
weights (str | Path): Path to the weights file. Defaults to ROOT / "yolov5s.pt".
imgsz (int): Inference size in pixels. Defaults to 640.
batch_size (int): Number of images per batch. Defaults to 1.
data (str | Path): Path to the dataset yaml file. Defaults to ROOT / "data/coco128.yaml".
device (str): Device for inference. Accepts cuda device (e.g., "0" or "0,1,2,3") or "cpu". Defaults to "".
half (bool): Use FP16 half-precision inference. Defaults to False.
test (bool): Run export tests only, no inference. Defaults to False.
pt_only (bool): Run tests on PyTorch format only. Defaults to False.
hard_fail (bool): Raise an error on benchmark failure. Defaults to False.
Returns:
pd.DataFrame: A DataFrame containing the export formats and their success status.
Examples:
```python
from ultralytics import test
results = test(
weights="path/to/yolov5s.pt",
imgsz=640,
batch_size=1,
data="path/to/coco128.yaml",
device="0",
half=False,
test=True,
pt_only=False,
hard_fail=True,
)
print(results)
```
Notes:
Ensure all required packages are installed as specified in the Ultralytics YOLOv3 documentation:
https://github.com/ultralytics/ultralytics
"""
y, t = [], time.time()
device = select_device(device)
for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
try:
w = (
weights
if f == "-"
else export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1]
) # weights
assert suffix in str(w), "export failed"
y.append([name, True])
except Exception:
y.append([name, False]) # mAP, t_inference
# Print results
LOGGER.info("\n")
parse_opt()
notebook_init() # print system info
py = pd.DataFrame(y, columns=["Format", "Export"])
LOGGER.info(f"\nExports complete ({time.time() - t:.2f}s)")
LOGGER.info(str(py))
return py
def parse_opt():
"""
Parses command line arguments for YOLOv3 inference and export configurations.
Args:
--weights (str): Path to the weights file. Default is 'ROOT / "yolov3-tiny.pt"'.
--imgsz | --img | --img-size (int): Inference image size in pixels. Default is 640.
--batch-size (int): Batch size for inference. Default is 1.
--data (str): Path to the dataset configuration file (dataset.yaml). Default is 'ROOT / "data/coco128.yaml"'.
--device (str): CUDA device identifier, e.g., '0' for single GPU, '0,1,2,3' for multiple GPUs, or 'cpu' for CPU
inference. Default is "".
--half (bool): If set, use FP16 half-precision inference. Default is False.
--test (bool): If set, test only exports without running inference. Default is False.
--pt-only (bool): If set, test only the PyTorch model without exporting to other formats. Default is False.
--hard-fail (str | bool): If set, raise an exception on benchmark failure. Can also be a string representing the
minimum metric floor for success. Default is False.
Returns:
argparse.Namespace: The parsed arguments as a namespace object.
Example:
To run inference on the YOLOv3-tiny model with a different image size:
```python
$ python benchmarks.py --weights yolov3-tiny.pt --imgsz 512 --device 0
```
Notes:
The `--hard-fail` argument can be a boolean or a string. If a string is provided, it should be an expression that
represents the minimum acceptable metric value, such as '0.29' for mAP (mean Average Precision).
Links:
https://github.com/ultralytics/ultralytics
"""
parser = argparse.ArgumentParser()
parser.add_argument("--weights", type=str, default=ROOT / "yolov3-tiny.pt", help="weights path")
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)")
parser.add_argument("--batch-size", type=int, default=1, help="batch size")
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
parser.add_argument("--test", action="store_true", help="test exports only")
parser.add_argument("--pt-only", action="store_true", help="test PyTorch only")
parser.add_argument("--hard-fail", nargs="?", const=True, default=False, help="Exception on error or < min metric")
opt = parser.parse_args()
opt.data = check_yaml(opt.data) # check YAML
print_args(vars(opt))
return opt
def main(opt):
"""
Executes the export and benchmarking pipeline for YOLOv3 models, testing multiple export formats and validating
performance metrics.
Args:
opt (argparse.Namespace): Parsed command line arguments, including options for weights, image size, batch size,
dataset path, device, half-precision inference, test mode, PyTorch-only testing, and hard fail conditions.
Returns:
pd.DataFrame: A DataFrame containing benchmarking results with columns:
- Format: Name of the export format
- Size (MB): File size of the exported model
- mAP50-95: Mean Average Precision for the model
- Inference time (ms): Time taken for inference
Notes:
The function runs the main pipeline by exporting the YOLOv3 model to various formats and running benchmarks to
evaluate performance. If `opt.test` is set to True, it only tests the export process and logs the results.
Example:
Running the function from command line with required arguments:
```python
$ python benchmarks.py --weights yolov5s.pt --img 640
```
For more details, visit the Ultralytics YOLOv3 repository on [GitHub](https://github.com/ultralytics/ultralytics).
"""
test(**vars(opt)) if opt.test else run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)