-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrobot.py
executable file
·220 lines (164 loc) · 7.6 KB
/
robot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from defines import *
from math import (
pi, sqrt, hypot, sin, cos, tan, asin, acos, atan, atan2, radians, degrees,
floor, ceil, exp
)
import numpy as np
import random
from utils import *
from copy import deepcopy
class Robot:
""" The main class representing robot that can sense and move """
def __init__(self, speed, speed_turn, gps_time, sonar_time, tick_move, tick_rotate):
"""
Initialize robot
"""
self.speed = speed
self.tick_move = tick_move
self.tick_rotate = tick_rotate
self.speed_turn = speed_turn
self.x = 0.0
self.y = 0.0
self.orientation = 0.0
self.steering_noise = 0.0
self.distance_noise = 0.0
self.sonar_noise = 0.0
self.measurement_noise = 0.0
self.time_elapsed = 0.0
self.gps_time = gps_time
self.sonar_time = sonar_time
#TODO: extract
def set(self, new_x, new_y, new_orientation):
"""
Set robot position
@note: Cannot be called by contestant
"""
self.x = float(new_x)
self.y = float(new_y)
self.orientation = float(new_orientation) % (2.0 * pi)
#TODO: extract from this class
def set_noise(self, new_s_noise, new_d_noise, new_m_noise, new_sonar_noise):
"""
Set noise parameter
@note: Cannot be called by contestant
"""
# makes it possible to change the noise parameters
# this is often useful in particle filters
self.steering_noise = float(new_s_noise)
self.distance_noise = float(new_d_noise)
self.measurement_noise = float(new_m_noise)
self.sonar_noise = float(new_sonar_noise)
def check_collision(self, grid):
"""
Checks for collisions with some slack
@note: Cannot be called by contestant
@returns: True if no collisions
"""
x_disc, y_disc = int(self.x +0.5), int(self.y + 0.5)
dist_x_border = min(abs(self.x - x_disc), abs(self.x - (x_disc+1)))
dist_y_border = min(abs(self.y - y_disc), abs(self.y - (y_disc+1)))
dist_border = min(dist_x_border, dist_y_border)
if grid[x_disc][y_disc] == 1:
return False
#
## Box based (sharp edges):
## TODO: add slack here !!
#for i in xrange(len(grid)):
# for j in xrange(len(grid[0])):
# # not sure about chained operators..
# if grid[i][j] == 1 \
# and (float(i+1) - SQUARE_SIDE/2.0) > self.x > (float(i) - SQUARE_SIDE/2.0)\
# and (float(j+1) - SQUARE_SIDE/2.0) > self.y > (float(j) - SQUARE_SIDE/2.0):
# return False
return True
def move(self, x):
"""
Move the robot forward by x **Ticks**
"""
if(abs(x) > 1): raise("Illegal move")
# make a new copy (TODO: use deepcopy)
res = deepcopy(self)
distance = max(0.0,random.gauss(int(x)*self.tick_move, self.distance_noise))
res.x += distance * cos(res.orientation)
res.y += distance * sin(res.orientation)
res.time_elapsed += abs(distance/self.speed) # speed is 1.0/time_unit
return res
def turn(self, x):
"""
Turn robot by x **Ticks**
"""
if(abs(x) > 1): raise("Illegal turn")
# make a new copy (TODO: use deepcopy)
res = deepcopy(self)
turn = random.gauss(int(x)*self.tick_rotate, self.steering_noise)
res.orientation = (res.orientation+turn)%(2*pi)
res.time_elapsed += abs(turn/self.speed_turn) # speed is pi/time_unit
return res
def sense_field(self, grid):
disc_x, disc_y = int(self.x + SQUARE_SIDE/2.0), int(self.y + SQUARE_SIDE/2.0)
return grid[disc_x][disc_y]
def sense_gps(self):
""" Returns estimation for position (GPS signal) """
self.time_elapsed += self.gps_time
ret = [random.gauss(self.x, self.measurement_noise),
random.gauss(self.y, self.measurement_noise)]
return ret
def sense_sonar(self, grid):
"""
Returns distance to wall using 128bit precision floats
"""
tolerance_a = np.float64(1e-13)
max_a = np.float64(1e10)
found = False
def is_hit(x, y):
tolerance_xy = np.float64(1e-4) # will check nearby
exact_hit = grid[int(x)][int(y)] == 1
hit_right = int(x) < (len(grid)-1) and grid[int(x)+1][int(y)] == 1 and (x - int(x)) > (SQUARE_SIDE-tolerance_xy)
hit_left = int(x) > 0 and grid[int(x)-1][int(y)] == 1 and (x - int(x)) < tolerance_xy
hit_top = int(y) < (len(grid[0])-1) and grid[int(x)][int(y)+1] == 1 and (y - int(y)) > (SQUARE_SIDE-tolerance_xy)
hit_bottom = int(y) > 0 and grid[int(x)][int(y)-1] == 1 and (y - int(y)) < tolerance_xy
return exact_hit or hit_right or hit_left or hit_top or hit_bottom
x_min_col, y_min_col = [np.float64(0), np.float64(0), np.float64(1e100)], [np.float64(0), np.float64(0),
np.float64(1e100)]
x, y = np.float64(self.x + SQUARE_SIDE/2.0), np.float64((self.y + SQUARE_SIDE/2.0))
#logger.info(("robot:",x," ",y," ",self.orientation))
x_disc, y_disc = int(x), int(y)
orient_x = np.float64(np.cos(np.float64(self.orientation)))
orient_y = np.float64(np.sin(np.float64(self.orientation)))
a = np.float64(np.tan(np.float64(self.orientation)))
b = np.float64(y - a*x)
for i in xrange(0, len(grid)):
if a > max_a:
cross_x, cross_y = np.float64(x), np.float64(float(i)+1e-10)
else:
cross_x, cross_y = np.float64(float(i)+1e-10), np.float64(a*(float(i)+1e-10) + b)
if cross_x < 0.0 or cross_x > len(grid)*SQUARE_SIDE or cross_y < 0.0 or cross_y > len(grid[0])*SQUARE_SIDE:
continue
diff_x, diff_y = np.float64(cross_x - x), np.float64(cross_y-y)
if orient_x*diff_x + orient_y*diff_y > 0:
#logger.info((cross_x, cross_y))
if is_hit(cross_x, cross_y) and (diff_x**2 + diff_y**2) < x_min_col[2]:
x_min_col = [cross_x, cross_y, (diff_x**2 + diff_y**2)]
found = True
# Find collisions with y walls
for i in xrange(0, len(grid[0])):
# Check if line is almost parallel to the axis
if abs(a) > tolerance_a:
cross_x, cross_y = np.float64((float(i)+np.float64(1e-10) - b)/a), \
np.float64(float(i)+1e-10)
else:
cross_x, cross_y = np.float64(float(i)+1e-10),np.float64(y)
if cross_x < 0.0 or cross_x > len(grid)*SQUARE_SIDE or cross_y < 0.0 or cross_y > len(grid[0])*SQUARE_SIDE:
continue
diff_x, diff_y = np.float64(cross_x - x), np.float64(cross_y - y)
if orient_x*diff_x + orient_y*diff_y > 0:
if is_hit(cross_x, cross_y) and (diff_x**2 + diff_y**2) < y_min_col[2]:
y_min_col = [cross_x, cross_y, (diff_x**2 + diff_y**2)]
found = True
if not found:
raise KrakrobotException("Something went wrong with sonar - not found wall! Note: boundary should be walled")
self.time_elapsed += self.sonar_time
return random.gauss(float(sqrt(min(x_min_col[2], y_min_col[2]))), self.sonar_noise)
def __repr__(self):
# return '[x=%.5f y=%.5f orient=%.5f]' % (self.x, self.y, self.orientation)
return '[%.5f, %.5f]' % (self.x, self.y)