-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
328 lines (301 loc) · 10.8 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
'''
File Name: data_loader.py
Author: Surya Teja Tadigadapa ([email protected])
Maintainer: Surya Teja Tadigadapa ([email protected])
Description:
This script parses data from the CSV Trip Survey and creates a random sample of
20 Percent and then creates a JSON file for each day of the week.
A week number (string), city and survey year are added to the JSON Objects.
A datestamp for every day of the week is also added.
The JSON files are then uploaded to a MongoDB database.
'''
# Import libraries.
import os
import csv
import json
import random
import time
import datetime
import logging
import requests
from pymongo import MongoClient
#-----------------------------------------------------------------------#
# Function: Crawler Logger Init #
#-----------------------------------------------------------------------#
def crawler_logger_init():
# Create log.
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# Create the log handler & reset every week.
lh = logging.FileHandler("extended_crawler_log.txt")
# Format the log.
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
lh.setFormatter(formatter)
# Add handler to the logger object.
logger.addHandler(lh)
return logger
#-----------------------------------------------------------------------#
# Function: Load Data #
#-----------------------------------------------------------------------#
def load_data(week_number):
# Open Log and log date.
logger = crawler_logger_init()
logger.info("Loading data for week: "+str(week_number))
# Set up database connection.
client = MongoClient(os.environ['DB_PORT_27017_TCP_ADDR'],27017)
db = client.trial
record = db.try0
# Open CSV file, read headers and get length of data.
dataFile = open('congestion_survey.csv')
traffic_data_sheet = csv.reader(dataFile)
headers = traffic_data_sheet.next()
traffic_data_array = list(traffic_data_sheet)
# Set keys to headers.
keys = {}
keys['ID_ORDEM'] = headers.index('ID_ORDEM')
keys['TIPOVG'] = headers.index('TIPOVG')
keys['H_SAIDA'] = headers.index('H_SAIDA')
keys['MIN_SAIDA'] = headers.index('MIN_SAIDA')
keys['DIA_SEM'] = headers.index('DIA_SEM')
keys['Lat_O'] = headers.index('Lat_O')
keys['Long_O'] = headers.index('Long_O')
keys['Lat_D'] = headers.index('Lat_D')
keys['Long_D'] = headers.index('Long_D')
# Create lists for JSON Objects.
formatted_data = []
formatted_data_monday = []
formatted_data_tuesday = []
formatted_data_wednesday = []
formatted_data_thursday = []
formatted_data_friday = []
# Create datestamps for trips.
current_date = datetime.datetime.today().strftime('%Y/%m/%d')
current_date_str = datetime.datetime.strptime(current_date, '%Y/%m/%d')
week_date = current_date_str + datetime.timedelta(days=+1)
monday = str(week_date.month)+"-"+str(week_date.day)+"-"+str(week_date.year)
week_date = current_date_str + datetime.timedelta(days=+2)
tuesday = str(week_date.month)+"-"+str(week_date.day)+"-"+str(week_date.year)
week_date = current_date_str + datetime.timedelta(days=+3)
wednesday = str(week_date.month)+"-"+str(week_date.day)+"-"+str(week_date.year)
week_date = current_date_str + datetime.timedelta(days=+4)
thursday = str(week_date.month)+"-"+str(week_date.day)+"-"+str(week_date.year)
week_date = current_date_str + datetime.timedelta(days=+5)
friday = str(week_date.month)+"-"+str(week_date.day)+"-"+str(week_date.year)
# Create a JSON Object for every trip in the CSV file.
for i in range(len(traffic_data_array)):
value = traffic_data_array[i]
# Exclude trips without timestamps in the CSV file.
if value[keys['MIN_SAIDA']] == '' or value[keys['DIA_SEM']] == '' or value[keys['H_SAIDA']] == '' or int(value[keys['DIA_SEM']]) == None or int(value[keys['DIA_SEM']]) == 0:
continue
# Set datestamp for each trip.
if (int(value[keys['DIA_SEM']]) - 2)==0:
datestamp = monday
if (int(value[keys['DIA_SEM']]) - 2)==1:
datestamp = tuesday
if (int(value[keys['DIA_SEM']]) - 2)==2:
datestamp = wednesday
if (int(value[keys['DIA_SEM']]) - 2)==3:
datestamp = thursday
if (int(value[keys['DIA_SEM']]) - 2)==4:
datestamp = friday
traffic_data_dict = {
"trip_id": str(value[keys['ID_ORDEM']]),
"survey":"2012",
"city":"Sao Paulo",
"weeks": week_number,
# Week starts at day 2 (aka Monday == 2) in the CSV file, we start it at 0.
"timestamp": {
"hours": int(value[keys['H_SAIDA']]),
"minutes": int(value[keys['MIN_SAIDA']]),
"day": int(value[keys['DIA_SEM']]) - 2
},
"origin": {
"latitude": value[keys['Lat_O']],
"longitude": value[keys['Long_O']]
},
"destination": {
"latitude": value[keys['Lat_D']],
"longitude": value[keys['Long_D']]
},
"public_transit": {
"distance": "-2",
"time": "-2",
"traffic": "-2"
},
"biking":{
"distance": "-2",
"time": "-2",
"traffic": "-2"
},
"walking":{
"distance": "-2",
"time": "-2",
"traffic": "-2"
},
"m120":{
"distance": "-2",
"time": "-2",
"traffic": "-2"
}, # minus 120
"m100":{
"distance": "-2",
"time": "-2",
"traffic": "-2"
},
"m80":{
"distance": "-2",
"time": "-2",
"traffic": "-2"
},
"m60":{
"distance": "-2",
"time": "-2",
"traffic": "-2"
},
"m40":{
"distance": "-2",
"time": "-2",
"traffic": "-2"
},
"m20":{
"distance": "-2",
"time": "-2",
"traffic": "-2"
},
"t0":{
"distance": "-2",
"time": "-2",
"traffic": "-2"
},
"p20":{
"distance": "-2",
"time": "-2",
"traffic": "-2"
}, # plus 20
"p40":{
"distance": "-2",
"time": "-2",
"traffic": "-2"
},
"p60":{
"distance": "-2",
"time": "-2",
"traffic": "-2"
},
"p80":{
"distance": "-2",
"time": "-2",
"traffic": "-2"
},
"p100":{
"distance": "-2",
"time": "-2",
"traffic": "-2"
},
"p120":{
"distance": "-2",
"time": "-2",
"traffic": "-2"
}
}
# Append every JSON trip into the list.
formatted_data.append(traffic_data_dict)
# Append every JSON trip into the list for the respective day.
if int(value[keys['DIA_SEM']]) - 2 == 0:
formatted_data_monday.append(traffic_data_dict)
elif (int(value[keys['DIA_SEM']]) - 2)==1:
formatted_data_tuesday.append(traffic_data_dict)
elif (int(value[keys['DIA_SEM']]) - 2)==2:
formatted_data_wednesday.append(traffic_data_dict)
elif (int(value[keys['DIA_SEM']]) - 2)==3:
formatted_data_thursday.append(traffic_data_dict)
elif (int(value[keys['DIA_SEM']]) - 2)==4:
formatted_data_friday.append(traffic_data_dict)
# Close the CSV file.
dataFile.close()
# Log data statistics.
logger.info("Parsed CSV file and created JSON Objects")
logger.info("Total number of trips for this week: " + str(len(formatted_data)))
logger.info("Total number of trips for Monday: " + str(len(formatted_data_monday)))
logger.info("Total number of trips for Tuesday: " + str(len(formatted_data_tuesday)))
logger.info("Total number of trips for Wednesday: " + str(len(formatted_data_wednesday)))
logger.info("Total number of trips for Thursday: " + str(len(formatted_data_thursday)))
logger.info("Total number of trips for Friday: " + str(len(formatted_data_friday)))
# Caluclate number of trips to be extracted per day by the random sample generator.
monday_count = int(0.2 * len(formatted_data_monday))
tuesday_count = int(0.2 * len(formatted_data_tuesday))
wednesday_count = int(0.2 * len(formatted_data_wednesday))
thursday_count = int(0.2 * len(formatted_data_thursday))
friday_count = int(0.2 * len(formatted_data_friday))
# Create random sample of trips for every day.
monday_rand_items = random.sample(formatted_data_monday, monday_count)
tuesday_rand_items = random.sample(formatted_data_tuesday, tuesday_count)
wednesday_rand_items = random.sample(formatted_data_wednesday, wednesday_count)
thursday_rand_items = random.sample(formatted_data_thursday, thursday_count)
friday_rand_items = random.sample(formatted_data_friday, friday_count)
# Log data statistics.
logger.info("Created random sample")
logger.info("20 percent of the Trips for Monday: " + str(len(monday_rand_items)))
logger.info("20 percent of the Trips for Tuesday: " + str(len(tuesday_rand_items)))
logger.info("20 percent of the Trips for Wednesday: " + str(len(wednesday_rand_items)))
logger.info("20 percent of the Trips for Thursday: " + str(len(thursday_rand_items)))
logger.info("20 percent of the Trips for Friday: " + str(len(friday_rand_items)))
# Write all JSON Objects to a JSON file. JSON file only contains all trips of the current day.
body_monday_rand_items = json.dumps(monday_rand_items, sort_keys = True, indent = 4, separators = (',',':'))
body_tuesday_rand_items = json.dumps(tuesday_rand_items, sort_keys = True, indent = 4, separators = (',',':'))
body_wednesday_rand_items = json.dumps(wednesday_rand_items, sort_keys = True, indent = 4, separators = (',',':'))
body_thursday_rand_items = json.dumps(thursday_rand_items, sort_keys = True, indent = 4, separators = (',',':'))
body_friday_rand_items = json.dumps(friday_rand_items, sort_keys = True, indent = 4, separators = (',',':'))
f = open('20percent_monday.json', 'w')
f.write(body_monday_rand_items)
f.close()
f = open('20percent_tuesday.json', 'w')
f.write(body_tuesday_rand_items)
f.close()
f = open('20percent_wednesday.json', 'w')
f.write(body_wednesday_rand_items)
f.close()
f = open('20percent_thursday.json', 'w')
f.write(body_thursday_rand_items)
f.close()
f = open('20percent_friday.json', 'w')
f.write(body_friday_rand_items)
f.close()
logger.info("Wrote JSON files containing random sample of trips.")
# Push JSON Objects from the file into the database.
page = open("20percent_monday.json", 'r')
parsed = json.loads(page.read())
for item in parsed:
record.insert(item)
page.close()
page = open("20percent_tuesday.json", 'r')
parsed = json.loads(page.read())
for item in parsed:
record.insert(item)
page.close()
page = open("20percent_wednesday.json", 'r')
parsed = json.loads(page.read())
for item in parsed:
record.insert(item)
page.close()
page = open("20percent_thursday.json", 'r')
parsed = json.loads(page.read())
for item in parsed:
record.insert(item)
page.close()
page = open("20percent_friday.json", 'r')
parsed = json.loads(page.read())
for item in parsed:
record.insert(item)
page.close()
logger.info("Loaded data into the database.")
# Send notification to Slack.
url = "https://hooks.slack.com/services/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"
data_loader_msg = "Sao Paulo 2012 Survey Extended-Crawler: Data loading succesful."
payload={"text": data_loader_msg}
try:
r = requests.post(url, data=json.dumps(payload))
except requests.exceptions.RequestException as e:
logger.info("Sao Paulo 2012 Survey Extended-Crawler: Error while sending data loader Slack notification.")
logger.info(e)
logger.info(data_loader_msg)