-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoptimize.py
91 lines (73 loc) · 2.69 KB
/
optimize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from estimating_causal_powers import Analysis
import numpy as np
import torch
import matplotlib.pyplot as plt
from torch import nn
from torch.functional import F
import sys
if sys.argv[1] == "GPU":
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
# assumptions
prior = 0
noise_bounds = torch.tensor([[0,0.1]], device=device)
# get posterior at zero noise
ana = Analysis(noise_bounds, optimize=True)
base, _, _ = ana.run_analysis(torch.tensor([0.], dtype=torch.float32, requires_grad=True, device=device))
class Model(nn.Module):
"""Custom Pytorch model for gradient optimization.
"""
def __init__(self, noise_bounds : torch.tensor, noise_ndim = 1):
super().__init__()
if sys.argv[1] == "GPU":
self.device = torch.device("cuda:0")
else:
self.device = torch.device("cpu")
weights = []
for i in range(noise_bounds.shape[0]):
weights.append(torch.distributions.Uniform(noise_bounds[i][0], noise_bounds[i][1]).sample((1,)))
# make weights torch parameters
self.weights = nn.Parameter(torch.tensor(weights, dtype=torch.float, device=self.device, requires_grad=True))
# weights = torch.distributions.Uniform(0, 0.1).sample((1,))
# # make weights torch parameters
# self.weights = nn.Parameter(weights)
def forward(self):
e, _, _ = ana.run_analysis(self.weights)
return e
def training_loop(model, optimizer, n=1000):
"Training loop for torch model."
losses = []
weights = []
distances = []
for i in range(n):
preds = model()
loss = 1 / torch.abs(base - preds)
loss.backward(retain_graph=True)
optimizer.step()
optimizer.zero_grad()
# record progress
losses.append(loss.item())
weights.append(m.weights.item())
distances.append(torch.abs(base - preds).item())
return losses, weights, distances
# Instantiate optimizer
max_distances = []
max_noises = []
# k is the number of restart
k = 3
for i in range(k):
# instantiate model
m = Model(noise_bounds)
opt = torch.optim.Adam(m.parameters(), lr=0.001)
losses, noises, distances = training_loop(m, opt, n=100)
if (len(max_distances) == 0 or max(distances) > max(max_distances)):
max_distances, max_noises = distances, noises
plt.figure(figsize=(14, 7))
plt.plot(max_noises, max_distances)
print("---------------------------------")
print("Base(expectation with 0 eps): ", base)
print("Max ED1 is :", max(max_distances))
print("Reached at eps: ", max_noises[max_distances.index(max(max_distances))])
print("---------------------------------")
plt.show()