-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathecg.py
183 lines (135 loc) · 5.74 KB
/
ecg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
"""
ecg.py
------
This module provides classes and functions for processing an ECG waveform.
By: Sebastian D. Goodfellow, Ph.D., 2018
"""
# 3rd party imports
import numpy as np
from biosppy.signals import ecg
from biosppy.signals.tools import filter_signal
from sklearn.preprocessing import StandardScaler
class ECG(object):
# Label lookup
label_lookup = {label: idx for idx, label in enumerate(sorted(['AF', 'I-AVB', 'LBBB', 'Normal', 'PAC', 'PVC', 'RBBB', 'STD', 'STE']))}
def __init__(self, file_name, label, waveform, filter_bands, fs):
# Set parameters
self.file_name = file_name
self.label_str = label
self.waveform = waveform
self.filter_bands = filter_bands
self.fs = fs
# Set attributes
self.time = np.arange(len(self.waveform)) * 1 / self.fs
self.length = self._get_waveform_length(waveform=self.waveform)
self.duration = self._get_waveform_duration(waveform=self.waveform)
self.filtered = None
self.templates = None
self.rpeaks_ps = None
self.rpeaks_ts = None
self.rpeak_count = None
# Scale waveform
self._scale_amplitude()
# Get rpeaks
self.rpeaks_ps = self._get_rpeaks()
# Filter waveform
self.filtered = self._filter_waveform()
# Get templates
self.templates, self.rpeaks_ps = self._get_templates(waveform=self.filtered, rpeaks=self.rpeaks_ps,
before=0.25, after=0.4)
# Get rpeaks time array
self.rpeaks_ts = self._get_rpeaks_time_array()
# Get rpeak count
self.rpeak_count = len(self.rpeaks_ps)
# Check polarity
self._polarity_check()
# Normalize waveforms
self._normalize()
def get_dictionary(self):
"""Return a dictionary of processed ECG waveforms and features."""
return {'label_str': self.label_str, 'label_int': self.label_int, 'time': self.time, 'waveform': self.waveform,
'filtered': self.filtered, 'templates': self.templates, 'rpeak_count': self.rpeak_count,
'rpeaks_ps': self.rpeaks_ps, 'rpeaks_ts': self.rpeaks_ts, 'length': self.length,
'duration': self.duration}
def _scale_amplitude(self):
"""Scale amplitude to values with a mean of zero and standard deviation of 1."""
# Get scaler object
scaler = StandardScaler()
# Fit scaler with finite data
scaler = scaler.fit(self.waveform.reshape(-1, 1))
# Scale signal
self.waveform = scaler.transform(self.waveform.reshape(-1, 1)).reshape(-1,)
self.waveform = self.waveform.reshape(-1, 12)
def _get_rpeaks(self):
"""Hamilton-Tompkins r-peak detection."""
# Get BioSPPy ecg object
ecg_object = ecg.ecg(signal=self.waveform[:, 0], sampling_rate=self.fs, show=False)
return ecg_object['rpeaks']
def _get_rpeaks_time_array(self):
"""Get an array of r-peak times."""
return self.rpeaks_ps * 1 / self.fs
def _filter_waveform(self):
"""Filter raw ECG waveform with bandpass finite-impulse-response filter."""
# Calculate filter order
order = int(0.3 * self.fs)
# Filter waveform
filtered = np.zeros(self.waveform.shape)
for lead in range(self.waveform.shape[1]):
filtered[:, lead], _, _ = filter_signal(signal=self.waveform[:, lead], ftype='FIR', band='bandpass', order=order,
frequency=self.filter_bands, sampling_rate=self.fs)
return filtered
def _get_templates(self, waveform, rpeaks, before, after):
"""Extract waveform PQRST-templates."""
# convert delimiters to samples
before = int(before * self.fs)
after = int(after * self.fs)
# Sort R-Peaks in ascending order
rpeaks = np.sort(rpeaks)
# Get number of sample points in waveform
length = len(waveform)
# Create empty list for templates
templates = []
# Create empty list for new rpeaks that match templates dimension
rpeaks_new = np.empty(0, dtype=int)
# Loop through R-Peaks
for rpeak in rpeaks:
# Before R-Peak
a = rpeak - before
if a < 0:
continue
# After R-Peak
b = rpeak + after
if b > length:
break
# Append template list
templates.append(waveform[a:b])
# Append new rpeaks list
rpeaks_new = np.append(rpeaks_new, rpeak)
# Convert list to numpy array
templates = np.array(templates).T
return templates, rpeaks_new
def _polarity_check(self):
"""Correct for inverted polarity."""
# Get extremes of median templates
templates_min = np.min(np.median(self.templates, axis=1))
templates_max = np.max(np.median(self.templates, axis=1))
if np.abs(templates_min) > np.abs(templates_max):
# Flip polarity
self.waveform *= -1
self.filtered *= -1
self.templates *= -1
def _normalize(self):
"""Normalize waveform to median r-peak amplitude."""
# Get median templates max
templates_max = np.max(np.median(self.templates, axis=1))
# Normalize ecg signals
self.waveform /= templates_max
self.filtered /= templates_max
self.templates /= templates_max
@staticmethod
def _get_waveform_length(waveform):
"""Get waveform length in sample points."""
return len(waveform)
def _get_waveform_duration(self, waveform):
"""Get waveform duration in seconds."""
return len(waveform) * 1 / self.fs