-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcustom.py
34 lines (29 loc) · 1.28 KB
/
custom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from keras import backend as K
from keras.layers import Layer
from keras import metrics
class Sampler:
def __init__(self, **kwargs):
self.batch_size = kwargs.get('batch_size')
self.latent_dim = kwargs.get('latent_dim')
self.epsilon_std = kwargs.get('epsilon_std')
def sampling(self, args):
z_mean, z_log_var = args
epsilon = K.random_normal(shape=(self.batch_size, self.latent_dim), mean=0., stddev=self.epsilon_std)
return z_mean + K.exp(z_log_var / 2) * epsilon
class CustomVariationalLayer(Layer):
def __init__(self, original_dim, z_mean, z_log_var, **kwargs):
self.is_placeholder = True
super(CustomVariationalLayer, self).__init__(**kwargs)
self.original_dim = original_dim
self.z_mean = z_mean
self.z_log_var = z_log_var
def vae_loss(self, x, x_decoded_mean):
xent_loss = self.original_dim * metrics.binary_crossentropy(x, x_decoded_mean)
kl_loss = - 0.5 * K.sum(1 + self.z_log_var - K.square(self.z_mean) - K.exp(self.z_log_var), axis=-1)
return K.mean(xent_loss + kl_loss)
def call(self, inputs):
x = inputs[0]
x_decoded_mean = inputs[1]
loss = self.vae_loss(x, x_decoded_mean)
self.add_loss(loss, inputs=inputs)
return x