Skip to content

Latest commit

 

History

History
executable file
·
74 lines (62 loc) · 3.3 KB

README.md

File metadata and controls

executable file
·
74 lines (62 loc) · 3.3 KB

E-MRP-CNN

This is the original code used in paper Evolving Multi-Resolution Pooling CNN for Monaural Singing Voice Separation, which is published on IEEE/ACM Transactions on Audio, Speech, and Language Processing.

You can download pretrained models from https://tuxzz.org/emrpcnn-ckpt/

Software requirements

  • Python 3.7+ 64bit
  • CUDA 10.0+
  • cuDNN 7.6+
  • PIP package: numpy scipy matplotlib numba tensorflow-gpu librosa sndfile mir_eval soundfile requests flask frozendict psutil museval filelock
  • Tensorflow 2.0 is recommended to reproduce the paper

Hardware requirements

  • GPU: NVIDIA Pascal and above, with 11GB+ GPU Memory
  • SSD: 128GB+ free space for dataset cache
  • MEM: 48GB+ free space

Dataset preparation

  • For DSD100 and MIR-1K, no extra processing is needed.
  • For MUSDB18, you need decode .mp4 files into .wav files use the musdb tool.

Steps to Evolve

Server side

  1. cd to srv
  2. Rename the correct config template file to config.py
  3. If needed, modify the listen_addr and listen_port in config.py.
  4. Run python main_srv.py
  5. Run clients on GPU machine.
  6. Your checkpoints will be saved in directory named like v1_nsga2_mus2_0.0.

Client side

  1. cd to cli
  2. Modify the srv_url and dataset path in config.py
  3. Run python main.py -lockpath=./gpu.lock

Steps to Extract Evolution Result

  1. cd to paper_tex
  2. Modify plot_nsga2_stat.py line 100 or plot_g1_stat.py line 32 to 37 to choose which generation to print.
  3. Run python plot_nsga2_stat.py or python plot_nsga2_stat.py with argument -input=<evolve checkpoint path> -dataset=<mus2/dsd2/mir2> -score=<train/test>
  4. Copy the gene you need from terminal output, for example 4182591019167972528534244115322478782824676 is a gene, which is used for seed population.

Steps to Train

MIR-1K or DSD100

  1. cd to final_eval
  2. Modify config.py, set correct cache path and dataset path.
  3. Run python dsd2_mkcache.py or python mir2_mkcache.py
  4. Run python dsd2_train.py or python mir2_train.py with argument -ver=v1 -gene=<gene number>.
  5. The checkpoints are saved in path like ckpt/<mir2/dsd2>_v1_<gene number>.

MUSDB18

  1. cd to final_eval
  2. Modify config.py, set correct dataset path.
  3. Modify mus2f_train.py line 133:138, set correct cache_meta_path and cache_path.
  4. Run python mus2f_train.py -ver=v1fm -gene=<gene number>
  5. The checkpoints are saved in path like ckpt/mus2f_v1fm_<gene number>.

Steps to Evaluate

MIR-1K or DSD100

  1. cd to final_eval
  2. Modify config.py, set correct dataset path.
  3. Run python dsd2_eval.py or python mir2_eval.py with argument -ver=v1f -gene=<gene number> -step=<checkpoint step>
  4. The result is saved in eval_output.

MUSDB18

  1. cd to final_eval
  2. Modify config.py, set correct dataset path.
  3. Run python mus2f_museval.py -ver=v1fm -gene=<gene number> -step=<checkpoint step>
  4. The result is saved in eval_output_mus2f and eval_output_mus2f_bundle, the splitted audio is saved in sound_output_mus2f.

Steps to Split Any Audio

Using MUSDB18 Checkpoints

  1. cd to final_eval
  2. Run python split_song_f.py -dataset=mus2 -ver=v1fm -gene=<gene number> -step=<checkpoint step> -input=<wav path>
  3. The result is saved in split_out_f.