-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
76 lines (61 loc) · 2.24 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
import cv2
import sys
import glob
import time
import math
import argparse
import numpy as np
import tensorflow as tf
import generate_HDR_dataset
from HDR import *
from val import run
from PIL import Image
from tensorflow.keras import Model, Input
from tensorflow.keras.utils import multi_gpu_model
from tensorflow.keras.layers import Concatenate, Conv2D, Input
def get_test_data(images_path):
file1 = open(os.path.join(images_path, 'exposure.txt'), 'r')
Lines = file1.readlines()
t = [float(k) for k in Lines]
batch_np = np.zeros([3, 768, 1024, 6])
list_file = sorted(glob.glob(os.path.join(images_path, '*.tif')))
for j, f in enumerate(list_file):
ldr = (cv2.imread(f, -1)).astype(np.float32)
ldr = ldr / 65535.0
ldr = cv2.resize(ldr, (1024, 768))
hdr = ldr**2.2 / (2**t[j])
X = np.concatenate([ldr, hdr], axis=-1)
X = np.expand_dims(X, axis=0)
batch_np[j,:,:,:] = X
imgs_np = np.expand_dims(batch_np, axis=0)
return imgs_np
def run(config, model):
SDR = get_test_data(config.test_path)
print(SDR.shape)
rs = model.predict(SDR)
out = rs[0]
tonemap = cv2.createTonemapReinhard()
out = tonemap.process(out.copy())
cv2.imwrite(os.path.join(config.test_path, 'hdr.jpg'), np.uint8(out*255))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Input Parameters
parser.add_argument('--test_path', type=str, default="Test/EXTRA/001/")
parser.add_argument('--gpu', type=str, default='0')
parser.add_argument('--weight_test_path', type=str, default= "weights/best.h5")
parser.add_argument('--filter', type=int, default= 32)
parser.add_argument('--attention_filter', type=int, default= 64)
parser.add_argument('--kernel', type=int, default= 3)
parser.add_argument('--encoder_kernel', type=int, default= 3)
parser.add_argument('--decoder_kernel', type=int, default= 4)
parser.add_argument('--triple_pass_filter', type=int, default= 256)
config = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = config.gpu
model_x = NHDRRNet(config)
x = Input(shape=(3, 768, 1024, 6))
out = model_x.main_model(x)
model = Model(inputs=x, outputs=out)
model.load_weights(config.weight_test_path)
model.summary()
run(config, model)