-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathdemo.py
103 lines (75 loc) · 3.2 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# coding: utf-8
# In[1]:
import os
import cv2
import numpy as np
import tensorflow as tf
import BKNetStyle2 as BKNetStyle
from const import *
from mtcnn.mtcnn import MTCNN
# In[2]:
def load_network():
sess = tf.Session()
x = tf.placeholder(tf.float32, [None, 48, 48, 1])
y_smile_conv, y_gender_conv, y_age_conv, phase_train, keep_prob = BKNetStyle.BKNetModel(x)
print('Restore model')
saver = tf.train.Saver()
saver.restore(sess, './save/current5/model-age101.ckpt.index')
print('OK')
return sess, x, y_smile_conv, y_gender_conv, y_age_conv, phase_train, keep_prob
# In[3]:
def draw_label(image, x, y, w, h, label, font=cv2.FONT_HERSHEY_SIMPLEX, font_scale=1, thickness=2):
cv2.rectangle(image, (x, y), (x+w, y+h), (0,155,255), 2)
cv2.putText(image, label, (x,y), font, font_scale, (255, 255, 255), thickness)
# In[4]:
def main(sess, x, y_smile_conv, y_gender_conv, y_age_conv, phase_train, keep_prob):
# capture video
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
detector = MTCNN()
while True:
# get video frame
ret, img = cap.read()
if not ret:
print("error: failed to capture image")
return -1
# detect face and crop face, convert to gray, resize to 48x48
original_img = img
result = detector.detect_faces(original_img)
if not result:
cv2.imshow("result", original_img)
continue
face_position = result[0].get('box')
x_coordinate = face_position[0]
y_coordinate = face_position[1]
w_coordinate = face_position[2]
h_coordinate = face_position[3]
img = original_img[y_coordinate:y_coordinate+h_coordinate, x_coordinate:x_coordinate+w_coordinate]
if(img.size==0):
cv2.imshow("result", original_img)
continue;
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.resize(img,(48, 48))
img = (img - 128) / 255.0
T = np.zeros([48, 48, 1])
T[:, :, 0] = img
test_img = []
test_img.append(T)
test_img = np.asarray(test_img)
predict_y_smile_conv = sess.run(y_smile_conv, feed_dict={x: test_img, phase_train: False, keep_prob: 1})
predict_y_gender_conv = sess.run(y_gender_conv, feed_dict={x: test_img, phase_train: False, keep_prob: 1})
predict_y_age_conv = sess.run(y_age_conv, feed_dict={x: test_img, phase_train: False, keep_prob: 1})
smile_label = "-_-" if np.argmax(predict_y_smile_conv)==0 else ":)"
gender_label = "Female" if np.argmax(predict_y_gender_conv)==0 else "Male"
argmax_predict_age = np.argmax(predict_y_age_conv)
label = "{}, {}, {}".format(smile_label, gender_label, argmax_predict_age)
draw_label(original_img, x_coordinate, y_coordinate, w_coordinate, h_coordinate, label)
cv2.imshow("result", original_img)
key = cv2.waitKey(1)
if key == 27:
break
# In[5]:
if __name__ == '__main__':
sess, x, y_smile_conv, y_gender_conv, y_age_conv, phase_train, keep_prob = load_network()
main(sess, x, y_smile_conv, y_gender_conv, y_age_conv, phase_train, keep_prob)