-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathsolver.f90
230 lines (190 loc) · 7.1 KB
/
solver.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
!> @file solver.f90
!!
!! Single iteration of the governing equations.
!
! *****************************************************************************
!
! (c) J. Blazek, CFD Consulting & Analysis, www.cfd-ca.de
! Created February 25, 2014
! Last modification: September 19, 2014
!
! *****************************************************************************
!
! This program is free software; you can redistribute it and/or
! modify it under the terms of the GNU General Public License
! as published by the Free Software Foundation; either version 2
! of the License, or (at your option) any later version.
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program; if not, write to the Free Software
! Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
!
! *****************************************************************************
!> Integrates the four basic equations (continuity, momentum and energy) by
!! the explicit, multi-stage (Runge-Kutta) time-stepping scheme.
!!
!! @param iwork integer work space for temporary variables
!! @param work real work space for temporary variables
!!
subroutine Solver( iwork,work )
use ModDataTypes
use ModGeometry
use ModNumerics
use ModPhysics
use ModInterfaces, only : BoundaryConditions, CompTheta, Cons2Prim, &
DependentVarsAll, DissipRoe1, DissipRoe1Prec, &
DissipRoe2, DissipRoe2Prec, ErrorMessage, &
FluxRoe1, FluxRoe2, FluxViscous, Gradients, &
GradientsVisc, Irsmoo, Limiter, LimiterInit, &
MatrixTimesInverse, Periodic, Prim2Cons, &
TimeStep, ZeroResiduals
implicit none
! parameters
integer :: iwork(:)
real(rtype) :: work(:)
! local variables
integer :: i, irk, mp, mp2
real(rtype) :: blend1, fac, adtv, H, q2, rhop, rhoT, hT, theta, u, v
real(rtype) :: wvec(5), wpvec(5), pmat(5,5), gmat1(5,5), dmat(5,5), r(5)
real(rtype), allocatable :: dum1(:,:), dum2(:,:)
! *****************************************************************************
! calculate dimensions for dummy arrays (LimiterInit, Limiter, FluxRoe,
! Irsmoo, BoundaryConditions); check them
mp = nconv*nnodes
mp2 = 2*mp
if (mp2 > Ubound(work,1)) then
call ErrorMessage( "insufficient work space in Solver" )
endif
! store previous solution; set dissipation = 0
cvold(:,:) = cv(:,:)
diss(:,:) = 0.D0
! compute the time step
call TimeStep
! loop over the Runge-Kutta stages ============================================
do irk=1,nrk
! - initialize dissipation
if (irk>1 .and. ldiss(irk)/=0) then
blend1 = 1.D0 - betrk(irk)
do i=1,nnodes
diss(1,i) = blend1*diss(1,i)
diss(2,i) = blend1*diss(2,i)
diss(3,i) = blend1*diss(3,i)
diss(4,i) = blend1*diss(4,i)
enddo
endif
! - viscous flux (Navier-Stokes eqs.)
if (ldiss(irk)/=0 .and. kequs=="N") then
call GradientsVisc
call FluxViscous( betrk(irk) )
endif
! - Roe's flux-difference splitting scheme (upwind)
! limiter and upwind dissipation
if (ldiss(irk) /= 0) then
if (iorder < 2) then
if (kprecond == "Y") then
call DissipRoe1Prec( betrk(irk) )
else
call DissipRoe1( betrk(irk) )
endif
else
allocate(dum1(4,nnodes)) ! Truong ajoute 27/05/2017
allocate(dum2(4,nnodes)) ! Truong ajoute 27/05/2017
dum1 = Reshape( work(1:mp) ,(/4, nnodes/) )
dum2 = Reshape( work((mp+1):mp2),(/4, nnodes/) )
if (kequs == "E") call Gradients
call LimiterInit( dum1,dum2 )
call Limiter( dum1,dum2 )
if (kprecond == "Y") then
call DissipRoe2Prec( betrk(irk) )
else
call DissipRoe2( betrk(irk) )
endif
if (allocated(dum1)) deallocate(dum1) ! Truong ajoute 27/05/2017
if (allocated(dum2)) deallocate(dum2) ! Truong ajoute 27/05/2017
endif
endif
! convective flux; add upwind dissipation => residual
if (iorder < 2) then
call FluxRoe1
else
call FluxRoe2
endif
! - preconditioning
if (kprecond == "Y") then
do i=1,nndint
rhop = cv(1,i)/dv(1,i)
rhoT = -cv(1,i)/dv(2,i)
hT = dv(5,i)
u = cv(2,i)/cv(1,i)
v = cv(3,i)/cv(1,i)
q2 = u*u + v*v
H = (cv(4,i)+dv(1,i))/cv(1,i)
theta = CompTheta( dv(4,i),dv(3,i),q2 )
wvec(1) = cv(1,i)
wvec(2) = cv(2,i)
wvec(3) = cv(3,i)
wvec(4) = 0.D0
wvec(5) = cv(4,i)
wpvec(1) = dv(1,i)
wpvec(2) = u
wpvec(3) = v
wpvec(4) = 0.D0
wpvec(5) = dv(2,i)
call Cons2Prim( wvec,wpvec,H,q2,theta,rhoT,0.D0,hT,gmat1 )
call Prim2Cons( wvec,wpvec,H,rhop,rhoT,0.D0,hT,pmat )
call MatrixTimesInverse( wpvec,q2,pmat,gmat1,dmat )
r(1) = rhs(1,i)
r(2) = rhs(2,i)
r(3) = rhs(3,i)
r(4) = rhs(4,i)
rhs(1,i) = dmat(1,1)*r(1) + dmat(1,2)*r(2) + &
dmat(1,3)*r(3) + dmat(1,5)*r(4)
rhs(2,i) = dmat(2,1)*r(1) + dmat(2,2)*r(2) + &
dmat(2,3)*r(3) + dmat(2,5)*r(4)
rhs(3,i) = dmat(3,1)*r(1) + dmat(3,2)*r(2) + &
dmat(3,3)*r(3) + dmat(3,5)*r(4)
rhs(4,i) = dmat(5,1)*r(1) + dmat(5,2)*r(2) + &
dmat(5,3)*r(3) + dmat(5,5)*r(4)
enddo
endif
! - correct residuals at symmetry/no-slip boundaries
call ZeroResiduals
! - combine residuals at periodic boundaries
call Periodic( rhs )
! - residual * time step / volume
fac = ark(irk)*cfl
do i=1,nndint
adtv = fac*tstep(i)/vol(i)
rhs(1,i) = adtv*rhs(1,i)
rhs(2,i) = adtv*rhs(2,i)
rhs(3,i) = adtv*rhs(3,i)
rhs(4,i) = adtv*rhs(4,i)
enddo
! - implicit residual smoothing
if (epsirs > 0.D0) then
allocate(dum1(4,nnodes)) ! Truong ajoute 27/05/2017
allocate(dum2(4,nnodes)) ! Truong ajoute 27/05/2017
dum1 = Reshape( work(1:mp) ,(/4, nnodes/) )
dum2 = Reshape( work((mp+1):mp2),(/4, nnodes/) )
call Irsmoo( iwork,dum1,dum2 )
call ZeroResiduals
if (allocated(dum1)) deallocate(dum1) ! Truong ajoute 27/05/2017
if (allocated(dum2)) deallocate(dum2) ! Truong ajoute 27/05/2017
endif
! - update - new solution, new dependent variables
do i=1,nndint
cv(1,i) = cvold(1,i) - rhs(1,i)
cv(2,i) = cvold(2,i) - rhs(2,i)
cv(3,i) = cvold(3,i) - rhs(3,i)
cv(4,i) = cvold(4,i) - rhs(4,i)
enddo
call DependentVarsAll
! - boundary conditions
call BoundaryConditions( work )
enddo ! irk
end subroutine Solver