forked from include-what-you-use/include-what-you-use
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiwyu_ast_util.cc
1424 lines (1272 loc) · 52.6 KB
/
iwyu_ast_util.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- iwyu_ast_util.cc - clang-AST utilities for include-what-you-use --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Utilities that make it easier to work with Clang's AST.
#include "iwyu_ast_util.h"
#include <set> // for set
#include <string> // for string, operator+, etc
#include <utility> // for pair
#include "iwyu_globals.h"
#include "iwyu_location_util.h"
#include "iwyu_path_util.h"
#include "iwyu_stl_util.h"
#include "iwyu_string_util.h"
#include "iwyu_verrs.h"
#include "port.h" // for CHECK_
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CanonicalType.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/TemplateName.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
namespace clang {
class FileEntry;
} // namespace clang
using clang::BlockPointerType;
using clang::CXXConstructExpr;
using clang::CXXConstructorDecl;
using clang::CXXDeleteExpr;
using clang::CXXDependentScopeMemberExpr;
using clang::CXXDestructorDecl;
using clang::CXXMethodDecl;
using clang::CXXNewExpr;
using clang::CXXRecordDecl;
using clang::CallExpr;
using clang::CastExpr;
using clang::ClassTemplateDecl;
using clang::ClassTemplatePartialSpecializationDecl;
using clang::ClassTemplateSpecializationDecl;
using clang::Decl;
using clang::DeclContext;
using clang::DeclRefExpr;
using clang::DeclaratorDecl;
using clang::DependentNameType;
using clang::DependentScopeDeclRefExpr;
using clang::DependentTemplateName;
using clang::DependentTemplateSpecializationType;
using clang::ElaboratedType;
using clang::EnumDecl;
using clang::ExplicitCastExpr;
using clang::Expr;
using clang::ExprWithCleanups;
using clang::FileEntry;
using clang::FullSourceLoc;
using clang::FunctionDecl;
using clang::FunctionType;
using clang::ImplicitCastExpr;
using clang::InjectedClassNameType;
using clang::LValueReferenceType;
using clang::MemberExpr;
using clang::MemberPointerType;
using clang::NamedDecl;
using clang::NestedNameSpecifier;
using clang::ObjCObjectType;
using clang::OverloadExpr;
using clang::PointerType;
using clang::QualType;
using clang::QualifiedTemplateName;
using clang::RecordDecl;
using clang::RecordType;
using clang::RecursiveASTVisitor;
using clang::SourceLocation;
using clang::SourceRange;
using clang::Stmt;
using clang::SubstTemplateTypeParmType;
using clang::TagDecl;
using clang::TagType;
using clang::TemplateArgument;
using clang::TemplateArgumentList;
using clang::TemplateArgumentListInfo;
using clang::TemplateArgumentLoc;
using clang::TemplateDecl;
using clang::TemplateName;
using clang::TemplateParameterList;
using clang::TemplateSpecializationKind;
using clang::TemplateSpecializationType;
using clang::TranslationUnitDecl;
using clang::Type;
using clang::TypeDecl;
using clang::TypeLoc;
using clang::TypedefNameDecl;
using clang::TypedefType;
using clang::UnaryOperator;
using clang::UsingDirectiveDecl;
using clang::ValueDecl;
using clang::VarDecl;
using llvm::ArrayRef;
using llvm::PointerUnion;
using llvm::cast;
using llvm::dyn_cast;
using llvm::errs;
using llvm::isa;
using llvm::raw_string_ostream;
namespace include_what_you_use {
namespace {
void DumpASTNode(llvm::raw_ostream& ostream, const ASTNode* node) {
if (const Decl *decl = node->GetAs<Decl>()) {
ostream << "[" << decl->getDeclKindName() << "Decl] "
<< PrintableDecl(decl);
} else if (const Stmt *stmt = node->GetAs<Stmt>()) {
ostream << "[" << stmt->getStmtClassName() << "] " << PrintableStmt(stmt);
} else if (const Type *type = node->GetAs<Type>()) { // +typeloc
ostream << "[" << type->getTypeClassName()
<< (node->IsA<TypeLoc>() ? "TypeLoc" : "Type") << "] "
<< PrintableType(type);
} else if (const NestedNameSpecifier *nns =
node->GetAs<NestedNameSpecifier>()) {
ostream << "[NestedNameSpecifier] " << PrintableNestedNameSpecifier(nns);
} else if (const TemplateName *tpl_name = node->GetAs<TemplateName>()) {
ostream << "[TemplateName] " << PrintableTemplateName(*tpl_name);
} else if (const TemplateArgumentLoc *tpl_argloc =
node->GetAs<TemplateArgumentLoc>()) {
ostream << "[TemplateArgumentLoc] "
<< PrintableTemplateArgumentLoc(*tpl_argloc);
} else if (const TemplateArgument *tpl_arg =
node->GetAs<TemplateArgument>()) {
ostream << "[TemplateArgument] " << PrintableTemplateArgument(*tpl_arg);
} else {
CHECK_UNREACHABLE_("Unknown kind for ASTNode");
}
}
TemplateSpecializationKind GetTemplateSpecializationKind(const Decl* decl) {
if (const auto* record = dyn_cast<CXXRecordDecl>(decl)) {
return record->getTemplateSpecializationKind();
}
return clang::TSK_Undeclared;
}
} // anonymous namespace
//------------------------------------------------------------
// ASTNode and associated utilities.
SourceLocation ASTNode::GetLocation() const {
SourceLocation retval;
if (FillLocationIfKnown(&retval))
return retval;
// OK, let's ask a parent node.
for (const ASTNode* node = parent_; node != nullptr; node = node->parent_) {
if (node->FillLocationIfKnown(&retval))
break;
}
// If the parent node shows the spelling and instantiation
// locations are in a different file, then we're uncertain of our
// own location. Return an invalid location.
if (retval.isValid()) {
FullSourceLoc full_loc(retval, source_manager_);
const FileEntry* spelling_file =
source_manager_.getFileEntryForID(
source_manager_.getFileID(full_loc.getSpellingLoc()));
const FileEntry* instantiation_file =
source_manager_.getFileEntryForID(
source_manager_.getFileID(full_loc.getExpansionLoc()));
if (spelling_file != instantiation_file)
return SourceLocation();
}
return retval;
}
bool ASTNode::FillLocationIfKnown(SourceLocation* loc) const {
using include_what_you_use::GetLocation;
switch (kind_) {
case kDeclKind:
*loc = GetLocation(as_decl_); // in iwyu_location_util.h
return true;
case kStmtKind:
*loc = GetLocation(as_stmt_);
return true;
case kTypelocKind:
*loc = GetLocation(as_typeloc_);
return true;
case kNNSLocKind:
*loc = GetLocation(as_nnsloc_);
return true;
case kTemplateArgumentLocKind:
*loc = GetLocation(as_template_argloc_);
return true;
case kTypeKind:
case kNNSKind:
case kTemplateNameKind:
case kTemplateArgumentKind:
return false;
}
CHECK_UNREACHABLE_("Unexpected kind of ASTNode");
}
// --- Utilities for ASTNode.
bool IsElaborationNode(const ASTNode* ast_node) {
if (ast_node == nullptr)
return false;
const ElaboratedType* elaborated_type = ast_node->GetAs<ElaboratedType>();
return elaborated_type && elaborated_type->getKeyword() != clang::ETK_None;
}
bool IsQualifiedNameNode(const ASTNode* ast_node) {
if (ast_node == nullptr)
return false;
const ElaboratedType* elaborated_type = ast_node->GetAs<ElaboratedType>();
if (elaborated_type == nullptr)
return false;
return elaborated_type->getQualifier() != nullptr;
}
bool IsNodeInsideCXXMethodBody(const ASTNode* ast_node) {
// If we're a destructor, we're definitely part of a method body;
// destructors don't have any other parts to them. This case is
// triggered when we see implicit destruction of member vars.
if (ast_node && ast_node->IsA<CXXDestructorDecl>())
return true;
for (; ast_node != nullptr; ast_node = ast_node->parent()) {
// If we're a constructor, check if we're part of the
// initializers, which also count as 'the body' of the method.
if (const CXXConstructorDecl* ctor =
ast_node->GetParentAs<CXXConstructorDecl>()) {
for (CXXConstructorDecl::init_const_iterator
it = ctor->init_begin(); it != ctor->init_end(); ++it) {
if (ast_node->ContentIs((*it)->getInit()))
return true;
}
// Now fall through to see if we're the body of the constructor.
}
if (const CXXMethodDecl* method_decl =
ast_node->GetParentAs<CXXMethodDecl>()) {
if (ast_node->ContentIs(method_decl->getBody())) {
return true;
}
}
}
return false;
}
UseFlags ComputeUseFlags(const ASTNode* ast_node) {
UseFlags flags = UF_None;
if (IsNodeInsideCXXMethodBody(ast_node))
flags |= UF_InCxxMethodBody;
// Definitions of free functions are a little special, because they themselves
// count as uses of all prior declarations (ideally we should probably just
// require one but it's hard so say which, so we pick all previously seen).
// Later IWYU analysis phases do some canonicalization that isn't
// necessary/valid for this case, so mark it up for later.
if (const auto* fd = ast_node->GetAs<FunctionDecl>()) {
if (fd->getKind() == Decl::Function && fd->isThisDeclarationADefinition())
flags |= UF_FunctionDfn;
}
return flags;
}
bool IsNestedClassAsWritten(const ASTNode* ast_node) {
return (ast_node->IsA<RecordDecl>() &&
(ast_node->ParentIsA<CXXRecordDecl>() ||
// For templated nested-classes, a ClassTemplateDecl is interposed.
(ast_node->ParentIsA<ClassTemplateDecl>() &&
ast_node->AncestorIsA<CXXRecordDecl>(2))));
}
bool IsDefaultTemplateTemplateArg(const ASTNode* ast_node) {
// Is ast_node the 'D' in the following:
// template<template <typename A> class T = D> class C { ... }
// ('D' might be something like 'vector').
// D is a TemplateName, since it's a template, and its parent
// is a TemplateArgument, since D is inside a template argument.
// The only way a template name can be in a template argument
// is if it's a default parameter.
return (ast_node->IsA<TemplateName>() &&
ast_node->ParentIsA<TemplateArgument>());
}
bool IsCXXConstructExprInInitializer(const ASTNode* ast_node) {
if (!ast_node->IsA<CXXConstructExpr>())
return false;
CHECK_(ast_node->parent() && "Constructor should not be a top-level node!");
// Typically, you can tell an initializer because its parent is a
// constructor decl. But sometimes -- I'm not exactly sure when --
// there can be an ExprWithCleanups in the middle.
return ((ast_node->ParentIsA<CXXConstructorDecl>()) ||
(ast_node->ParentIsA<ExprWithCleanups>() &&
ast_node->AncestorIsA<CXXConstructorDecl>(2)));
}
bool IsCXXConstructExprInNewExpr(const ASTNode* ast_node) {
if (!ast_node->IsA<CXXConstructExpr>())
return false;
CHECK_(ast_node->parent() && "Constructor should not be a top-level node!");
return ast_node->ParentIsA<CXXNewExpr>();
}
template<typename T>
NestedNameSpecifier* TryGetQualifier(const ASTNode* ast_node) {
if (ast_node->IsA<T>())
return ast_node->GetAs<T>()->getQualifier();
return nullptr;
}
const NestedNameSpecifier* GetQualifier(const ASTNode* ast_node) {
const NestedNameSpecifier* nns = nullptr;
if (ast_node->IsA<TemplateName>()) {
const TemplateName* tn = ast_node->GetAs<TemplateName>();
if (const DependentTemplateName* dtn
= tn->getAsDependentTemplateName())
nns = dtn->getQualifier();
else if (const QualifiedTemplateName* qtn
= tn->getAsQualifiedTemplateName())
nns = qtn->getQualifier();
}
if (!nns) nns = TryGetQualifier<ElaboratedType>(ast_node);
if (!nns) nns = TryGetQualifier<DependentNameType>(ast_node);
if (!nns)
nns = TryGetQualifier<DependentTemplateSpecializationType>(ast_node);
if (!nns) nns = TryGetQualifier<UsingDirectiveDecl>(ast_node);
if (!nns) nns = TryGetQualifier<EnumDecl>(ast_node);
if (!nns) nns = TryGetQualifier<RecordDecl>(ast_node);
if (!nns) nns = TryGetQualifier<DeclaratorDecl>(ast_node);
if (!nns) nns = TryGetQualifier<FunctionDecl>(ast_node);
if (!nns) nns = TryGetQualifier<CXXDependentScopeMemberExpr>(ast_node);
if (!nns) nns = TryGetQualifier<DeclRefExpr>(ast_node);
if (!nns) nns = TryGetQualifier<DependentScopeDeclRefExpr>(ast_node);
if (!nns) nns = TryGetQualifier<MemberExpr>(ast_node);
return nns;
}
bool IsMemberOfATypedef(const ASTNode* ast_node) {
// TODO(csilvers): is this ever triggered in practice?
if (ast_node->ParentIsA<TypedefType>()) { // my_typedef.a
return true;
}
// If we're one of those objects that exposes its qualifier
// (stuff before the ::), use that.
const NestedNameSpecifier* nns = GetQualifier(ast_node);
// If that doesn't work, see if our parent in the tree is an nns
// node. We have to be a bit careful here: 1) If we're a typedef
// ourselves, the nns-parent is just us. We have to go a level up
// to see our 'real' qualifier. 2) Often the parent will be an
// elaborated type, and we get to the qualifier that way.
if (!nns) {
nns = ast_node->GetParentAs<NestedNameSpecifier>();
if (nns && ast_node->IsA<TypedefType>()) {
nns = nns->getPrefix();
} else if (!nns) {
// nns will be non-nullptr when processing 'a' in MyTypedef::a::b
// But typically, such as processing 'a' in MyTypedef::a or 'b' in
// MyTypedef::a::b, the parent will be an ElaboratedType.
if (const ElaboratedType* elab_type =
ast_node->GetParentAs<ElaboratedType>())
nns = elab_type->getQualifier();
}
}
for (; nns; nns = nns->getPrefix()) {
if (nns->getAsType() && isa<TypedefType>(nns->getAsType()))
return true;
}
return false;
}
const DeclContext* GetDeclContext(const ASTNode* ast_node) {
for (; ast_node != nullptr; ast_node = ast_node->parent()) {
if (ast_node->IsA<Decl>())
return ast_node->GetAs<Decl>()->getDeclContext();
}
return nullptr;
}
//------------------------------------------------------------
// Helper functions for working with raw Clang AST nodes.
// --- Printers.
string PrintableLoc(SourceLocation loc) {
if (loc.isInvalid()) {
return "Invalid location";
} else {
std::string buffer; // llvm wants regular string, not our versa-string
raw_string_ostream ostream(buffer);
loc.print(ostream, *GlobalSourceManager());
return NormalizeFilePath(ostream.str());
}
}
string PrintableDecl(const Decl* decl, bool terse/*=true*/) {
// Use the terse flag to limit the level of output to one line.
clang::PrintingPolicy policy = decl->getASTContext().getPrintingPolicy();
policy.TerseOutput = terse;
policy.SuppressInitializers = terse;
policy.PolishForDeclaration = terse;
std::string buffer;
raw_string_ostream ostream(buffer);
decl->print(ostream, policy);
return ostream.str();
}
string PrintableStmt(const Stmt* stmt) {
std::string buffer;
raw_string_ostream ostream(buffer);
stmt->dump(ostream, *GlobalSourceManager());
return ostream.str();
}
void PrintStmt(const Stmt* stmt) {
stmt->dump(*GlobalSourceManager()); // This prints to errs().
}
string PrintableType(const Type* type) {
return QualType(type, 0).getAsString();
}
string PrintableTypeLoc(const TypeLoc& typeloc) {
return PrintableType(typeloc.getTypePtr());
}
string PrintableNestedNameSpecifier(
const NestedNameSpecifier* nns) {
std::string buffer; // llvm wants regular string, not our versa-string
raw_string_ostream ostream(buffer);
nns->print(ostream, DefaultPrintPolicy());
return ostream.str();
}
string PrintableTemplateName(const TemplateName& tpl_name) {
std::string buffer; // llvm wants regular string, not our versa-string
raw_string_ostream ostream(buffer);
tpl_name.print(ostream, DefaultPrintPolicy());
return ostream.str();
}
string PrintableTemplateArgument(const TemplateArgument& arg) {
std::string buffer;
raw_string_ostream ostream(buffer);
printTemplateArgumentList(ostream, ArrayRef<TemplateArgument>(arg),
DefaultPrintPolicy());
return ostream.str();
}
string PrintableTemplateArgumentLoc(const TemplateArgumentLoc& arg) {
std::string buffer;
raw_string_ostream ostream(buffer);
printTemplateArgumentList(ostream, ArrayRef<TemplateArgumentLoc>(arg),
DefaultPrintPolicy());
return ostream.str();
}
string PrintableASTNode(const ASTNode* node) {
std::string buffer;
raw_string_ostream ostream(buffer);
DumpASTNode(ostream, node);
return ostream.str();
}
// This prints to errs(). It's useful for debugging (e.g. inside gdb).
void PrintASTNode(const ASTNode* node) {
DumpASTNode(errs(), node);
errs() << "\n";
}
string GetWrittenQualifiedNameAsString(const NamedDecl* named_decl) {
std::string retval;
llvm::raw_string_ostream ostream(retval);
clang::PrintingPolicy printing_policy =
named_decl->getASTContext().getPrintingPolicy();
printing_policy.SuppressUnwrittenScope = true;
named_decl->printQualifiedName(ostream, printing_policy);
return ostream.str();
}
// --- Utilities for Template Arguments.
// If the TemplateArgument is a type (and not an expression such as
// 'true', or a template such as 'vector', etc), return it. Otherwise
// return nullptr.
static const Type* GetTemplateArgAsType(const TemplateArgument& tpl_arg) {
if (tpl_arg.getKind() == TemplateArgument::Type)
return tpl_arg.getAsType().getTypePtr();
return nullptr;
}
// These utilities figure out the template arguments that are
// specified in various contexts: TemplateSpecializationType (for
// template classes) and FunctionDecl (for template functions).
//
// For classes, we care only about explicitly specified template args,
// not implicit, default args. For functions, we care about all
// template args, since if not specified they're derived from the
// function arguments. In either case, we only care about template
// arguments that are types (including template types), not other
// kinds of arguments such as built-in types.
// This helper class visits a given AST node and finds all the types
// beneath it, which it returns as a set. For example, if you have a
// VarDecl 'vector<int(*)(const MyClass&)> x', it would return
// (vector<int(*)(const MyClass&)>, int(*)(const MyClass&),
// int(const MyClass&), int, const MyClass&, MyClass). Note that
// this function only returns types-as-written, so it does *not* return
// alloc<int(*)(const MyClass&)>, even though it's part of vector.
class TypeEnumerator : public RecursiveASTVisitor<TypeEnumerator> {
public:
typedef RecursiveASTVisitor<TypeEnumerator> Base;
// --- Public interface
// We can add more entry points as needed.
set<const Type*> Enumerate(const Type* type) {
seen_types_.clear();
if (!type)
return seen_types_;
TraverseType(QualType(type, 0));
return seen_types_;
}
set<const Type*> Enumerate(const TemplateArgument& tpl_arg) {
seen_types_.clear();
TraverseTemplateArgument(tpl_arg);
return seen_types_;
}
// --- Methods on RecursiveASTVisitor
bool VisitType(Type* type) {
seen_types_.insert(type);
return true;
}
private:
set<const Type*> seen_types_;
};
// A 'component' of a type is a type beneath it in the AST tree.
// So 'Foo*' has component 'Foo', as does 'vector<Foo>', while
// vector<pair<Foo, Bar>> has components pair<Foo,Bar>, Foo, and Bar.
set<const Type*> GetComponentsOfType(const Type* type) {
TypeEnumerator type_enumerator;
return type_enumerator.Enumerate(type);
}
// --- Utilities for Decl.
bool IsTemplatizedFunctionDecl(const FunctionDecl* decl) {
return decl && decl->getTemplateSpecializationArgs() != nullptr;
}
bool HasImplicitConversionCtor(const CXXRecordDecl* cxx_class) {
for (CXXRecordDecl::ctor_iterator ctor = cxx_class->ctor_begin();
ctor != cxx_class->ctor_end(); ++ctor) {
if (ctor->isExplicit() || ctor->getNumParams() != 1 ||
ctor->isCopyConstructor() || ctor->isMoveConstructor())
continue;
return true;
}
return false;
}
// C++ [class.virtual]p8:
// If the return type of D::f differs from the return type of B::f, the
// class type in the return type of D::f shall be complete at the point of
// declaration of D::f or shall be the class type D.
bool HasCovariantReturnType(const CXXMethodDecl* method_decl) {
QualType derived_return_type = method_decl->getReturnType();
for (CXXMethodDecl::method_iterator
it = method_decl->begin_overridden_methods();
it != method_decl->end_overridden_methods(); ++it) {
// There are further constraints on covariant return types as such
// (e.g. parents must be related, derived override must have return type
// derived from base override, etc.) but the only _valid_ case I can think
// of where return type differs is when they're actually covariant.
// That is, if Clang can already compile this code without errors, and
// return types differ, it can only be due to covariance.
if ((*it)->getReturnType() != derived_return_type)
return true;
}
return false;
}
const RecordDecl* GetDefinitionForClass(const Decl* decl) {
const RecordDecl* as_record = DynCastFrom(decl);
const ClassTemplateDecl* as_tpl = DynCastFrom(decl);
if (as_tpl) { // Convert the template to its underlying class defn.
as_record = DynCastFrom(as_tpl->getTemplatedDecl());
}
if (as_record) {
if (const RecordDecl* record_dfn = as_record->getDefinition()) {
return record_dfn;
}
// If we're a templated class that was never instantiated (because
// we were never "used"), then getDefinition() will return nullptr.
if (const ClassTemplateSpecializationDecl* spec_decl = DynCastFrom(decl)) {
PointerUnion<ClassTemplateDecl*,
ClassTemplatePartialSpecializationDecl*>
specialized_decl = spec_decl->getSpecializedTemplateOrPartial();
if (const ClassTemplatePartialSpecializationDecl*
partial_spec_decl =
specialized_decl.dyn_cast<
ClassTemplatePartialSpecializationDecl*>()) {
// decl would be instantiated from a template partial
// specialization.
CHECK_(partial_spec_decl->hasDefinition());
return partial_spec_decl->getDefinition();
} else if (const ClassTemplateDecl* tpl_decl =
specialized_decl.dyn_cast<ClassTemplateDecl*>()) {
// decl would be instantiated from a non-specialized
// template.
if (tpl_decl->getTemplatedDecl()->hasDefinition())
return tpl_decl->getTemplatedDecl()->getDefinition();
}
}
}
return nullptr;
}
SourceRange GetSourceRangeOfClassDecl(const Decl* decl) {
// If we're a templatized class, go 'up' a level to get the
// template<...> prefix as well.
if (const CXXRecordDecl* cxx_decl = DynCastFrom(decl)) {
if (cxx_decl->getDescribedClassTemplate())
return cxx_decl->getDescribedClassTemplate()->getSourceRange();
}
// We can get source ranges of classes and template classes.
if (const TagDecl* tag_decl = DynCastFrom(decl))
return tag_decl->getSourceRange();
if (const TemplateDecl* tpl_decl = DynCastFrom(decl))
return tpl_decl->getSourceRange();
CHECK_UNREACHABLE_("Cannot get source range for this decl type");
}
// Use a local RAV implementation to simply collect all FunctionDecls marked for
// late template parsing. This happens with the flag -fdelayed-template-parsing,
// which is on by default in MSVC-compatible mode.
set<FunctionDecl*> GetLateParsedFunctionDecls(TranslationUnitDecl* decl) {
struct Visitor : public RecursiveASTVisitor<Visitor> {
bool VisitFunctionDecl(FunctionDecl* function_decl) {
if (function_decl->isLateTemplateParsed())
late_parsed_decls.insert(function_decl);
return true;
}
set<FunctionDecl*> late_parsed_decls;
};
Visitor v;
v.TraverseDecl(decl);
return v.late_parsed_decls;
}
// Helper for the Get*ResugarMap*() functions. Given a map from
// desugared->resugared types, looks at each component of the
// resugared type (eg, both hash_set<Foo>* and vector<hash_set<Foo>>
// have two components: hash_set<Foo> and Foo), and returns a map that
// contains the original map elements plus mapping for the components.
// This is because when a type is 'owned' by the template
// instantiator, all parts of the type are owned. We only consider
// type-components as written.
static map<const Type*, const Type*> ResugarTypeComponents(
const map<const Type*, const Type*>& resugar_map) {
map<const Type*, const Type*> retval = resugar_map;
for (const auto& types : resugar_map) {
const set<const Type*>& components = GetComponentsOfType(types.second);
for (const Type* component_type : components) {
const Type* desugared_type = GetCanonicalType(component_type);
if (!ContainsKey(retval, desugared_type)) {
retval[desugared_type] = component_type;
VERRS(6) << "Adding a type-components of interest: "
<< PrintableType(component_type) << "\n";
}
}
}
return retval;
}
// Helpers for GetTplTypeResugarMapForFunction().
static map<const Type*, const Type*> GetTplTypeResugarMapForFunctionNoCallExpr(
const FunctionDecl* decl, unsigned start_arg) {
map<const Type*, const Type*> retval;
if (!decl) // can be nullptr if the function call is via a function pointer
return retval;
if (const TemplateArgumentList* tpl_list
= decl->getTemplateSpecializationArgs()) {
for (unsigned i = start_arg; i < tpl_list->size(); ++i) {
if (const Type* arg_type = GetTemplateArgAsType(tpl_list->get(i))) {
retval[GetCanonicalType(arg_type)] = arg_type;
VERRS(6) << "Adding an implicit tpl-function type of interest: "
<< PrintableType(arg_type) << "\n";
}
}
}
return retval;
}
static map<const Type*, const Type*>
GetTplTypeResugarMapForFunctionExplicitTplArgs(
const FunctionDecl* decl,
const TemplateArgumentListInfo& explicit_tpl_list) {
map<const Type*, const Type*> retval;
for (const TemplateArgumentLoc& loc : explicit_tpl_list.arguments()) {
if (const Type* arg_type = GetTemplateArgAsType(loc.getArgument())) {
retval[GetCanonicalType(arg_type)] = arg_type;
VERRS(6) << "Adding an explicit template-function type of interest: "
<< PrintableType(arg_type) << "\n";
}
}
return retval;
}
// Get the type of an expression while preserving as much type sugar as
// possible. This was originally designed for use with function argument
// expressions, and so might not work in a more general context.
static const Type* GetSugaredTypeOf(const Expr* expr) {
// First, try to find an ImplicitCastExpr under the expr, and let that provide
// the type. This has a higher probability of yielding a sugared type.
for (const Stmt* child_expr : expr->children()) {
if (const auto* cast_expr = dyn_cast<ImplicitCastExpr>(child_expr)) {
return cast_expr->getType().getTypePtr();
}
}
// If we didn't find a type via ImplicitCastExpr, just return the type of the
// expr itself.
return GetTypeOf(expr);
}
map<const Type*, const Type*> GetTplTypeResugarMapForFunction(
const FunctionDecl* decl, const Expr* calling_expr) {
map<const Type*, const Type*> retval;
// If calling_expr is nullptr, then we can't find any explicit template
// arguments, if they were specified (e.g. 'Fn<int>()'), and we
// won't be able to get the function arguments as written. So we
// can't resugar at all. We just have to hope that the types happen
// to be already sugared, because the actual-type is already canonical.
if (calling_expr == nullptr) {
retval = GetTplTypeResugarMapForFunctionNoCallExpr(decl, 0);
retval = ResugarTypeComponents(retval); // add in retval's decomposition
return retval;
}
// If calling_expr is a CXXConstructExpr of CXXNewExpr, then it's
// impossible to explicitly specify template arguments; all we have
// to go on is function arguments. If it's a CallExpr, and some
// arguments might be explicit, and others implicit. Otherwise,
// it's a type that doesn't take function template args at all (like
// CXXDeleteExpr) or only takes explicit args (like DeclRefExpr).
const Expr* const* fn_args = nullptr;
unsigned num_args = 0;
unsigned start_of_implicit_args = 0;
if (const CXXConstructExpr* ctor_expr = DynCastFrom(calling_expr)) {
fn_args = ctor_expr->getArgs();
num_args = ctor_expr->getNumArgs();
} else if (const CallExpr* call_expr = DynCastFrom(calling_expr)) {
fn_args = call_expr->getArgs();
num_args = call_expr->getNumArgs();
const Expr* callee_expr = call_expr->getCallee()->IgnoreParenCasts();
const TemplateArgumentListInfo& explicit_tpl_args
= GetExplicitTplArgs(callee_expr);
if (explicit_tpl_args.size() > 0) {
retval = GetTplTypeResugarMapForFunctionExplicitTplArgs(
decl, explicit_tpl_args);
start_of_implicit_args = explicit_tpl_args.size();
}
} else {
// If calling_expr has explicit template args, then consider them.
const TemplateArgumentListInfo& explicit_tpl_args
= GetExplicitTplArgs(calling_expr);
if (explicit_tpl_args.size() > 0) {
retval = GetTplTypeResugarMapForFunctionExplicitTplArgs(
decl, explicit_tpl_args);
retval = ResugarTypeComponents(retval);
}
return retval;
}
// Now we have to figure out, as best we can, the sugar-mappings for
// compiler-deduced template args. We do this by looking at every
// type specified in any part of the function arguments as written.
// If any of these types matches a template type, then we take that
// to be the resugar mapping. If none of the types match, then we
// assume that the template is matching some desugared part of the
// type, and we ignore it. For instance:
// operator<<(basic_ostream<char, T>& o, int i);
// If I pass in an ostream as the first argument, then no part
// of the (sugared) argument types match T, so we ignore it.
const map<const Type*, const Type*>& desugared_types
= GetTplTypeResugarMapForFunctionNoCallExpr(decl, start_of_implicit_args);
// TODO(csilvers): SubstTemplateTypeParms are always desugared,
// making this less useful than it should be.
// TODO(csilvers): if the GetArg(i) expr has an implicit cast
// under it, take the pre-cast type instead?
set<const Type*> fn_arg_types;
for (unsigned i = 0; i < num_args; ++i) {
const Type* argtype = GetSugaredTypeOf(fn_args[i]);
// TODO(csilvers): handle RecordTypes that are a TemplateSpecializationDecl
InsertAllInto(GetComponentsOfType(argtype), &fn_arg_types);
}
for (const Type* type : fn_arg_types) {
// See if any of the template args in retval are the desugared form of us.
const Type* desugared_type = GetCanonicalType(type);
if (ContainsKey(desugared_types, desugared_type)) {
retval[desugared_type] = type;
if (desugared_type != type) {
VERRS(6) << "Remapping template arg of interest: "
<< PrintableType(desugared_type) << " -> "
<< PrintableType(type) << "\n";
}
}
}
// Log the types we never mapped.
for (const auto& types : desugared_types) {
if (!ContainsKey(retval, types.first)) {
VERRS(6) << "Ignoring unseen-in-fn-args template arg of interest: "
<< PrintableType(types.first) << "\n";
}
}
retval = ResugarTypeComponents(retval); // add in the decomposition of retval
return retval;
}
const NamedDecl* GetInstantiatedFromDecl(const CXXRecordDecl* class_decl) {
if (const ClassTemplateSpecializationDecl* tpl_sp_decl =
DynCastFrom(class_decl)) { // an instantiated class template
PointerUnion<ClassTemplateDecl*, ClassTemplatePartialSpecializationDecl*>
instantiated_from = tpl_sp_decl->getInstantiatedFrom();
if (const ClassTemplateDecl* tpl_decl =
instantiated_from.dyn_cast<ClassTemplateDecl*>()) {
// class_decl is instantiated from a non-specialized template.
return tpl_decl;
} else if (const ClassTemplatePartialSpecializationDecl*
partial_spec_decl =
instantiated_from.dyn_cast<
ClassTemplatePartialSpecializationDecl*>()) {
// class_decl is instantiated from a template partial specialization.
return partial_spec_decl;
}
}
// class_decl is not instantiated from a template.
return class_decl;
}
const NamedDecl* GetDefinitionAsWritten(const NamedDecl* decl) {
// First, get to decl-as-written.
if (const CXXRecordDecl* class_decl = DynCastFrom(decl)) {
decl = GetInstantiatedFromDecl(class_decl);
if (const ClassTemplateDecl* tpl_decl = DynCastFrom(decl))
decl = tpl_decl->getTemplatedDecl(); // convert back to CXXRecordDecl
} else if (const FunctionDecl* func_decl = DynCastFrom(decl)) {
// If we're instantiated from a template, use the template pattern as the
// decl-as-written.
// But avoid friend declarations in templates, something happened in Clang
// r283207 that caused them to form a dedicated redecl chain, separate
// from all other redecls.
const FunctionDecl* tp_decl = func_decl->getTemplateInstantiationPattern();
if (tp_decl && tp_decl->getFriendObjectKind() == Decl::FOK_None)
decl = tp_decl;
}
// Then, get to definition.
if (const NamedDecl* class_dfn = GetDefinitionForClass(decl)) {
return class_dfn;
} else if (const FunctionDecl* fn_decl = DynCastFrom(decl)) {
for (FunctionDecl::redecl_iterator it = fn_decl->redecls_begin();
it != fn_decl->redecls_end(); ++it) {
if ((*it)->isThisDeclarationADefinition())
return *it;
}
}
// Couldn't find a definition, just return the original declaration.
return decl;
}
bool IsDefaultNewOrDelete(const FunctionDecl* decl,
const string& decl_loc_as_quoted_include) {
// Clang will report <new> as the location of the default new and
// delete operators if <new> is included. Otherwise, it reports the
// (fake) file "<built_in>".
if (decl_loc_as_quoted_include != "<new>" &&
!IsBuiltinFile(GetFileEntry(decl)))
return false;
const string decl_name = decl->getNameAsString();
if (!StartsWith(decl_name, "operator new") &&
!StartsWith(decl_name, "operator delete"))
return false;
// Placement-new/delete has 2 args, second is void*. The only other
// 2-arg overloads of new/delete in <new> take a const nothrow_t&.
if (decl->getNumParams() == 2 &&
!decl->getParamDecl(1)->getType().isConstQualified())
return false;
return true;
}
bool IsFriendDecl(const Decl* decl) {
// For 'template<...> friend class T', the decl will just be 'class T'.
// We need to go 'up' a level to check friendship in the right place.
if (const CXXRecordDecl* cxx_decl = DynCastFrom(decl))
if (cxx_decl->getDescribedClassTemplate())
decl = cxx_decl->getDescribedClassTemplate();
return decl->getFriendObjectKind() != Decl::FOK_None;
}
bool IsExplicitInstantiation(const clang::Decl* decl) {
TemplateSpecializationKind kind = GetTemplateSpecializationKind(decl);
return kind == clang::TSK_ExplicitInstantiationDeclaration ||
kind == clang::TSK_ExplicitInstantiationDefinition;
}
bool IsForwardDecl(const NamedDecl* decl) {
if (const auto* record_decl = dyn_cast<CXXRecordDecl>(decl)) {
return (!record_decl->getName().empty() &&
!record_decl->isCompleteDefinition() &&
!record_decl->isEmbeddedInDeclarator() &&
!IsFriendDecl(record_decl) &&
!IsExplicitInstantiation(record_decl));
}
return false;
}
// Two possibilities: it's written as a nested class (that is, with a
// qualifier) or it's actually living inside another class.
bool IsNestedClass(const TagDecl* decl) {
if (decl->getQualifier() &&
decl->getQualifier()->getKind() == NestedNameSpecifier::TypeSpec) {
return true;
}
return isa<RecordDecl>(decl->getDeclContext());
}
bool HasDefaultTemplateParameters(const TemplateDecl* decl) {
TemplateParameterList* tpl_params = decl->getTemplateParameters();
return tpl_params->getMinRequiredArguments() < tpl_params->size();
}
template <class T> inline set<const clang::NamedDecl*> GetRedeclsOfRedeclarable(
const clang::Redeclarable<T>* decl) {
return set<const clang::NamedDecl*>(decl->redecls_begin(),
decl->redecls_end());
}
// The only way to find out whether a decl can be dyn_cast to a
// Redeclarable<T> and what T is is to enumerate the possibilities.
// Hence we hard-code the list.
set<const clang::NamedDecl*> GetNonclassRedecls(const clang::NamedDecl* decl) {
CHECK_(!isa<RecordDecl>(decl) && "For classes, call GetClassRedecls()");
CHECK_(!isa<ClassTemplateDecl>(decl) && "For tpls, call GetClassRedecls()");
if (const TagDecl* specific_decl = DynCastFrom(decl))
return GetRedeclsOfRedeclarable(specific_decl);
// TODO(wan): go through iwyu to replace TypedefDecl with
// TypedefNameDecl as needed.
if (const TypedefNameDecl* specific_decl = DynCastFrom(decl))