-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathIWOA_dl.m
227 lines (191 loc) · 8.37 KB
/
IWOA_dl.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
% ---------------------------------------------------------
% WOA for power transmission allocation P == M x N matrix
%----------------------------------------------------------
% Output:
% leaderScore: value of obj function after this code == double
% leaderPos == M x N matrix
% convergenceCurve == 1 x maxIter matrix = value of obj function after each iteration
function [leaderScore, leaderPos, convergenceCurve] = IWOA_dl(noSearchAgents, noUsers, noBSs, UE_BS_, maxIter, var, fobj, posi_p_ul, X)
% noSearchAgents: number of whales
% noUsers = N_dl = number of UEs
% noBSs = M_dl = number of SBSs
% UE_BS_ = N x M
% P_SBS_max = 1 x M = maximum transmit power of SBSs
% posi_p_ul == N_ul x 1 == power allocation for UL
% X == (N_ul + M_dl) x K matrix == association matrix
start_idx_m = max(1, size(UE_BS_,2) - noBSs + 1);
start_idx_n = max(1, size(UE_BS_,1) - noUsers + 1);
UE_BS = UE_BS_(start_idx_n:end, start_idx_m:end); % N_dl x M_dl
leaderPos = zeros(noUsers, noBSs); % N_dl x M_dl
leaderScore = -inf;
leader_score_pre = leaderScore;
convergenceCurve = zeros(1, maxIter);
% ======================== Initialization =================
% new channel model
lb = var.P_SBS_min.*UE_BS; % N_dl x M_dl == lower bound of power transmission of M SBSs to N UEs
ub = var.P_SBS_max.*UE_BS; % N_dl x M_dl == upper bound
% % old channel model
% lb = P_SBS_min.*UE_BS / 10^32; % N x M == lower bound of power transmission of M SBSs to N UEs
% ub = P_SBS_max.*UE_BS / 10^20; % N x M == upper bound
posi_p = zeros(noUsers, noBSs, noSearchAgents); % N_dl x M_dl x noSA matrix
% posi_p == N_dl x M_dl x noSA
for nSA = 1:noSearchAgents
posi_p(:,:,nSA) = UE_BS .* (1/noUsers *rand(size(posi_p(:,:,nSA))).*(ub-lb) + lb);
end
% ======================== Loop ===========================
% Loop counter
t = 0;
todoTol = 1; % =0 to run all iteration
delta = 1e-4;
flag = 0;
PS_flag1 = 0; % population of search agents flags
PS_flag2 = 0;
PS_max = 40; %40;
PS_min = 10;
alpha = 0.25;
gamma_non = 20;
% Main loop
while t < maxIter && flag < 10
if t > 3
if PS_flag1 == 0 || PS_flag2 == 0
n_inc = 0;
end
if PS_flag2 == 2 % "increase"
% add n_inc search agents
n_inc = round(noSearchAgents * (PS_max - noSearchAgents)^2 / PS_max^2);
if n_inc >0
% compute distance
distant = zeros(1, noSearchAgents); % save the distance of SAs to the best SA
for jj = 1: noSearchAgents
distant(jj) = norm(posi_p(:,:,jj) - leaderPos);
end
[~, II] = sort(distant, 'ascend'); % II: index of SAs from nearest to furthest -> to the best SA
SA_bests = zeros(1,n_inc); % 1 x n_inc vector containting indexes of n_inc best SAs from n_in groups
if n_inc == 1
n_inc_ = n_inc +1; % if n_inc =1, we still need to get 2 SAs for generating the new SA
else n_inc_ = n_inc;
end
% divide II into n_inc groups
temp = [1:n_inc_, randi(n_inc_, 1, noSearchAgents -n_inc_)]; % random the index of groups, make sure each group appears at least once
temp = temp(randperm(length(temp))); % shuffle elements in temp
for ii = 1: n_inc_
group_ii = II(temp == ii); % vector containing indexes of SAs that are in group ii
SA_bests(ii) = group_ii(1); % add the best SA at the group to S
end
for ii = 1:n_inc
% pick 2 random SAs in SA_bests
SA_picked = randperm(n_inc_, 2); % pick 2 indexes of SA
% generate position of new SA
posi_SAnew = alpha^0.5* posi_p(:,:,SA_bests(SA_picked(1))) + (1-alpha)^0.5 *posi_p(:,SA_bests(SA_picked(2)));
posi_p(:,:,noSearchAgents +ii) = posi_SAnew;
end
noSearchAgents = noSearchAgents + n_inc;
end
end
if PS_flag1 == 1 || PS_flag2==1 % "decrease" % delete furthest SAs
n_dec = round(noSearchAgents * (PS_max - noSearchAgents)^2 / PS_max^2);
% compute distance
distant = zeros(1, noSearchAgents);
for jj = 1: noSearchAgents
distant(jj) = norm(posi_p(:,:,jj) - leaderPos);
end
[~, II] = sort(distant, 'descend'); % II: index of SAs from furthest to nearest -> to the best SA
posi_p(:,:, II(1:n_dec)) = []; % delete the furthest SAs
noSearchAgents = noSearchAgents - n_dec;
end
end
% Return back the search agents that go beyond the boundaries of the search space
tmp = posi_p;
flag4lb = tmp < lb;
flag4ub = tmp > ub;
posi_p = tmp.*(~(flag4lb + flag4ub)) + lb.*flag4lb + ub.*flag4ub;
% Calculate objective function for each search agent
for i = 1:noSearchAgents
fitness = fobj(posi_p_ul, posi_p(:,:, i), X);
% posi_p_ul == N_ul x 1
% posi_p(:,:,i) == N_dl x M_dl
% X == (N_ul + M_dl) x K
% Update the leader
if fitness > leaderScore
leaderScore = fitness;
leaderPos = posi_p(:,:, i); % N_dl x M_dl
end
end
% a decreases linearly from 2 to 0
% a = (1- t/(gamma_non * maxIter)) * (1+ 1/(1- gamma_non* t /maxIter));
a = 2 - t*(2/maxIter);
% a2 linearly decreases from -1 to -2 to calculate t
a2 = -1 + t*(-1/maxIter);
% Update the position of each search agents
for i = 1:noSearchAgents
r1 = rand();
r2 = rand();
A = 2*a*r1 - a;
C = 2*r2;
% parameters for spiral updating position
b = 1;
l = (a2 - 1)*rand + 1;
p = rand();
for n = 1:noUsers
for m = 1:noBSs
if UE_BS(n,m) ~= 1
continue % only consider transmit power of available UE-BS association
end
% follow the shrinking encircling mechanism or prey search
if p < 0.5
% search for prey (exploration phase)
if abs(A) >= 1
randLeaderIndex = floor(noSearchAgents*rand + 1);
X_rand = posi_p(:,:, randLeaderIndex); % -> X_rand == N x M matrix
D_X_rand = abs(C*X_rand(n,m) - posi_p(n,m,i)); % double
posi_p(n,m, i) = X_rand(n,m) - A*D_X_rand;
elseif abs(A) < 1
D_Leader = abs(C*leaderPos(n,m) - posi_p(n,m, i)); % D_Leader==double %% leaderPos == N x 1
posi_p(n,m,i) = leaderPos(n,m) - A*D_Leader;
end
elseif p >= 0.5
distance2Leader = abs(leaderPos(n,m) - posi_p(n,m,i));
posi_p(n,m,i) = distance2Leader*exp(b.*l).*cos(l.*2*pi) + leaderPos(n,m);
end
end
end
end
% increase the iteration index by 1
t = t + 1;
convergenceCurve(1,t) = leaderScore;
leader_pos_SA{t} = leaderPos; % cell of N x 1
% == position of best SA in generation t
if t >2
if ((sum(sum(leader_pos_SA{t} ~= leader_pos_SA{t-1})) >0 ) && ...
(sum(sum(leader_pos_SA{t-1} ~= leader_pos_SA{t-2})) >0) && ... % update 2 gen consecutively
noSearchAgents > PS_min)
PS_flag1 = 1; %"decrease";
else
PS_flag1 = 0;
end
if ((sum(sum((leader_pos_SA{t} ~= leader_pos_SA{t-1}) == 0 ))) && ... % not update 1 gen
noSearchAgents == PS_max)
PS_flag2 = 1; % "decrease";
elseif ((sum(sum(leader_pos_SA{t} ~= leader_pos_SA{t-1}) ==0 )) && ...
noSearchAgents < PS_max)
PS_flag2 = 2;% "increase";
else
PS_flag2 = 0;
end
if noSearchAgents > PS_max
PS_flag2 =1;
end
end
if todoTol == 1 && leaderScore<10 && abs(leaderScore - leader_score_pre) < delta && (t>150)
flag = flag + 1;
convergenceCurve = convergenceCurve(1, 1:t);
else
flag = 0;
end
% fprintf('WOA iter:%i, leaderScore:%i, flag:%i\n', t, leaderScore, flag)
leader_score_pre = leaderScore;
end
% plot(1:size(convergenceCurve,2),convergenceCurve);
% hold on;
% plot conver curve of WOA in one iter,
% uncomment and set breakpoint to se the figure