diff --git a/DESCRIPTION b/DESCRIPTION index 3346104..23a8aab 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,7 +1,7 @@ Package: OpenPoseR Type: Package Title: Analyze Motion-Tracking Data Derived from Video Files Using OpenPose -Version: 1.0.5 +Version: 1.1.0 Authors@R: c( person("Patrick C.", "Trettenbrein", email = "trettenbrein@cbs.mpg.de", role = c("aut", "cre")), person("Emiliano", "Zaccarella", email = "zaccarella@cbs.mpg.de", role = "aut")) @@ -20,4 +20,5 @@ Imports: reshape, RColorBrewer, magick, - av + av, + kza diff --git a/R/file_smooth_timeseries.R b/R/file_smooth_timeseries.R new file mode 100644 index 0000000..11f9439 --- /dev/null +++ b/R/file_smooth_timeseries.R @@ -0,0 +1,47 @@ +# file_smooth_timeseries() +# +# OpenPoseR (https://github.com/trettenbrein/OpenPoseR) +# Patrick C. Trettenbrein, trettenbrein@cbs.mpg.de +# +# A wrapper for the OpenPoseR function smooth_timeseries() that makes it possible to +# directly pass a file name and or path including a file name to the function. + +file_smooth_timeseries <- function(file, span = 4, order = 6, overwrite = FALSE) { + # We at least need an input file + if(missing(file)) { + stop("Argument \"file\" must be specified. Path to CSV file inclduing file name and ending (*.csv).", call. = FALSE) + } + + # Check whether file exists + if(!file.exists(file)) { + stop(paste("Couldn't find CSV file: ", file, sep = ""), call. = FALSE) + } + + # Read file + data <- read.csv(file = file) + + # Call clean_data() + smoothed_data <- smooth_timeseries(data[,1], span, order) + + # Update file (i.e. overwrite) or crate new file? + if(overwrite==FALSE) { + output_file <- try(write.csv(smoothed_data, file = paste(gsub("\\.csv$", "", file), + "_smoothed.csv", sep = ""), + row.names = FALSE)) + } else { + output_file <- try(write.csv(smoothed_data, file = file, row.names = FALSE)) + } + + # We should tell the user whether the operation was a success + output <- FALSE + ## See if files were created successfully, if not issue a warning + if(is.null(output_file)) { + output <- TRUE + } else { + warning("Creating file for results of calling smooth_timeseries() failed.", + call. = FALSE) + } + + # Return message about result + return(output) +} diff --git a/R/smooth_timeseries.R b/R/smooth_timeseries.R new file mode 100644 index 0000000..6fe5ca6 --- /dev/null +++ b/R/smooth_timeseries.R @@ -0,0 +1,34 @@ +# smooth_timeseries() +# +# OpenPoseR (https://github.com/trettenbrein/OpenPoseR) +# Patrick C. Trettenbrein, trettenbrein@cbs.mpg.de +# +# Applies a Kolmogorov-Zurbenko filter to the given time series data. +# +# Note: This function is inspired by and partly based upon code for +# smoothing procedures discussed by Wim Pouw (wim.pouw@donders.ru.nl) +# and James Trujillo (james.trujillo@donders.ru.nl) in the context of +# the "Envision Bootcamp" 2021. Plese find further details here: +# https://wimpouw.github.io/EnvisionBootcamp2021/MergingAcousticsMT.html + +smooth_timeseries <- function(data, span = 4, order = 6) { + # We'll be using the "kza" package, so let's require it + if (!requireNamespace("kza", quietly = TRUE)) { + stop("Package \"kza\" needed for this function to work. Please install it.", call. = FALSE) + } else { + # Load "kza" package + library("kza") + } + + # We at least need some data to work with + if(missing(data)) { + stop("You have to pass the function a data frame to work with.", + call. = FALSE) + } + + filtered_data <- kza(x = data, m = span, k = order, impute_tails = TRUE) + output <- filtered_data$kza + + # Return result + return(output) +} diff --git a/README.md b/README.md index 620dfd1..4af0af1 100644 --- a/README.md +++ b/README.md @@ -33,7 +33,7 @@ For details on what OpenPoseR can (and can't) do, respectively, how you can use ## Installation -For now, OpenPoseR (current version: 1.0.5) can be installed using the following commands (you will need to have the ``devtools`` package installed): +For now, OpenPoseR (current version: 1.1.0) can be installed using the following commands (you will need to have the ``devtools`` package installed): ```r # Install devtools from CRAN (if not already installed) diff --git a/man/file_smooth_timeseries.Rd b/man/file_smooth_timeseries.Rd new file mode 100644 index 0000000..80d19e9 --- /dev/null +++ b/man/file_smooth_timeseries.Rd @@ -0,0 +1,24 @@ +\name{file_smooth_timeseries} +\alias{file_smooth_timeseries} +\title{Smooth CSV file generated by en_velocity() or en_acceleration() using smooth_timeseries()} +\usage{ +file_smooth_timeseries(file, span, order, overwrite = FALSE) +} +\arguments{ +\item{file}{Name of CSV file (*.csv) or path to file including filename.} +\item{span}{The window for the filter.} +\item{order}{The number of iterations.} +\item{overwrite}{Optional. Defaults to FALSE. Will write output to "filename_smoothed.csv" in the input directory.} +} +\description{ +A wrapper for the OpenPoseR function smooth_timeseries() that makes it possible to directly pass a file name and or path including a file name to the function. + +Can be used to use smooth_timeseries() for a CSV file (*.csv) created using the en_velocity() or en_acceleration() functions without manually loading the data from the file into R first. +} +\examples{ +# Smooth file "~/myvideo/myvideo_body25_cleaned_en_velocity.csv" +file_smooth_timeseries("~/myvideo/myvideo_body25_cleaned_en_velocity.csv") + +# Smooth file "~/myvideo/myvideo_body25_cleaned_en_velocity.csv" and do not overwrite file +file_smooth_timeseries("~/myvideo/myvideo_body25_cleaned_en_velocity.csv", span = 4, order = 4, overwrite = TRUE) +} diff --git a/man/smooth_timeseries.Rd b/man/smooth_timeseries.Rd new file mode 100644 index 0000000..1b380f9 --- /dev/null +++ b/man/smooth_timeseries.Rd @@ -0,0 +1,17 @@ +\name{smooth_timeseries} +\alias{smooth_timeseries} +\title{Smooth time series data of given data frame using a Kolmogorov-Zurbenko filter.} +\usage{ +smooth_timeseries(data, span = 4, order = 6) +} +\arguments{ +\item{data}{A data frame with only one numerical column.} +\item{span}{The window for the filter.} +\item{order}{The number of iterations.} +} +\description{ +This function can be used to smooth time series data of given data frame using a Kolmogorov-Zurbenko filter. By default applies a "mild" filter and imputes the tails. +} +\examples{ +smooth_timeseries(data) +}