-
Notifications
You must be signed in to change notification settings - Fork 958
/
Copy pathWeightedMSECriterion.lua
45 lines (42 loc) · 1.23 KB
/
WeightedMSECriterion.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
local WeightedMSECriterion, parent = torch.class('nn.WeightedMSECriterion','nn.MSECriterion')
function WeightedMSECriterion:__init(w)
parent.__init(self)
self.weight = w:clone()
end
function WeightedMSECriterion:updateOutput(input,target)
self.buffer = self.buffer or input.new()
self.buffer:resizeAs(input):copy(target)
if input:dim() - 1 == self.weight:dim() then
for i=1,input:size(1) do
self.buffer[i]:cmul(self.weight)
end
else
self.buffer:cmul(self.weight)
end
self.output_tensor = self.output_tensor or input.new(1)
input.THNN.MSECriterion_updateOutput(
input:cdata(),
self.buffer:cdata(),
self.output_tensor:cdata(),
self.sizeAverage
)
self.output = self.output_tensor[1]
return self.output
end
function WeightedMSECriterion:updateGradInput(input, target)
self.buffer:resizeAs(input):copy(target)
if input:dim() - 1 == self.weight:dim() then
for i=1,input:size(1) do
self.buffer[i]:cmul(self.weight)
end
else
self.buffer:cmul(self.weight)
end
input.THNN.MSECriterion_updateGradInput(
input:cdata(),
self.buffer:cdata(),
self.gradInput:cdata(),
self.sizeAverage
)
return self.gradInput
end