-
Notifications
You must be signed in to change notification settings - Fork 958
/
Copy pathVolumetricFullConvolution.lua
225 lines (194 loc) · 7.33 KB
/
VolumetricFullConvolution.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
local THNN = require 'nn.THNN'
local VolumetricFullConvolution, parent = torch.class('nn.VolumetricFullConvolution','nn.Module')
function VolumetricFullConvolution:__init(nInputPlane, nOutputPlane,
kT, kW, kH, -- kernel size
dT, dW, dH, -- stride
padT, padW, padH, -- padding
adjT, adjW, adjH) -- extra output adjustment
parent.__init(self)
dW = dW or 1
dH = dH or 1
dT = dT or 1
self.nInputPlane = nInputPlane
self.nOutputPlane = nOutputPlane
self.kW = kW
self.kH = kH
self.kT = kT
self.dW = dW
self.dH = dH
self.dT = dT
self.padW = padW or 0
self.padH = padH or 0
self.padT = padT or 0
self.adjW = adjW or 0
self.adjH = adjH or 0
self.adjT = adjT or 0
if self.adjW > self.dW - 1 or self.adjH > self.dH - 1 or self.adjT > self.dT - 1 then
error('adjW, adjH and adjT must be smaller than self.dW - 1,' ..
' self.dH - 1 and self.dT - 1 respectively')
end
self.weight = torch.Tensor(nInputPlane, nOutputPlane, kT, kH, kW)
self.gradWeight = torch.Tensor(nInputPlane, nOutputPlane, kT, kH, kW)
self.bias = torch.Tensor(self.nOutputPlane)
self.gradBias = torch.Tensor(self.nOutputPlane)
self.ones = torch.Tensor()
self.finput = torch.Tensor()
self.fgradInput = torch.Tensor()
self:reset()
end
function VolumetricFullConvolution:reset(stdv)
if stdv then
stdv = stdv * math.sqrt(3)
else
local nInputPlane = self.nInputPlane
local kT = self.kT
local kH = self.kH
local kW = self.kW
stdv = 1/math.sqrt(kW*kH*kT*nInputPlane)
end
self.weight:uniform(-stdv, stdv)
self.bias:uniform(-stdv, stdv)
end
local function calculateAdj(targetSize, ker, pad, stride)
return (targetSize + 2 * pad - ker) % stride
end
function VolumetricFullConvolution:backCompatibility()
-- Transpose the weight when loading from an old version
if not self.adjW then
self.weight = self.weight:transpose(1, 2):contiguous()
end
-- Rename the padding when loading from an old version
self.padW = self.padW or self.pW
self.padH = self.padH or self.pH
self.padT = self.padT or self.pT
self.adjW = self.adjW or 0
self.adjH = self.adjH or 0
self.adjT = self.adjT or 0
end
function VolumetricFullConvolution:noBias()
self.bias = nil
self.gradBias = nil
return self
end
function VolumetricFullConvolution:updateOutput(input)
self:backCompatibility()
local inputTensor = input
local adjT, adjW, adjH = self.adjT, self.adjW, self.adjH
-- The input can be a table where the second element indicates the target
-- output size, in which case the adj factors are computed automatically
if torch.type(inputTensor) == 'table' then
inputTensor = input[1]
local targetTensor = input[2]
local tDims = targetTensor:dim()
local tT = targetTensor:size(tDims-2)
local tH = targetTensor:size(tDims-1)
local tW = targetTensor:size(tDims)
adjT = calculateAdj(tT, self.kT, self.padT, self.dT)
adjW = calculateAdj(tW, self.kW, self.padW, self.dW)
adjH = calculateAdj(tH, self.kH, self.padH, self.dH)
end
inputTensor.THNN.VolumetricFullConvolution_updateOutput(
inputTensor:cdata(),
self.output:cdata(),
self.weight:cdata(),
THNN.optionalTensor(self.bias),
self.finput:cdata(),
self.fgradInput:cdata(),
self.dT, self.dW, self.dH,
self.padT, self.padW, self.padH,
adjT, adjW, adjH
)
return self.output
end
function VolumetricFullConvolution:updateGradInput(input, gradOutput)
self:backCompatibility()
local inputTensor = input
local adjT, adjW, adjH = self.adjT, self.adjW, self.adjH
-- The input can be a table where the second element indicates the target
-- output size, in which case the adj factors are computed automatically
if torch.type(inputTensor) == 'table' then
inputTensor = input[1]
local targetTensor = input[2]
local tDims = targetTensor:dim()
local tT = targetTensor:size(tDims-2)
local tH = targetTensor:size(tDims-1)
local tW = targetTensor:size(tDims)
adjT = calculateAdj(tT, self.kT, self.padT, self.dT)
adjW = calculateAdj(tW, self.kW, self.padW, self.dW)
adjH = calculateAdj(tH, self.kH, self.padH, self.dH)
-- Momentarily extract the gradInput tensor
if torch.type(self.gradInput) == 'table' then
self.gradInput = self.gradInput[1]
end
end
inputTensor.THNN.VolumetricFullConvolution_updateGradInput(
inputTensor:cdata(),
gradOutput:cdata(),
self.gradInput:cdata(),
self.weight:cdata(),
self.finput:cdata(),
self.fgradInput:cdata(),
self.dT, self.dW, self.dH,
self.padT, self.padW, self.padH,
adjT, adjW, adjH
)
if torch.type(input) == 'table' then
-- Create a zero tensor to be expanded and used as gradInput[2].
self.zeroScalar = self.zeroScalar or input[2].new(1):zero()
self.ones:resize(input[2]:dim()):fill(1)
local zeroTensor = self.zeroScalar
:view(table.unpack(self.ones:totable()))
:expandAs(input[2])
self.gradInput = {self.gradInput, zeroTensor}
end
return self.gradInput
end
function VolumetricFullConvolution:accGradParameters(input, gradOutput, scale)
self:backCompatibility()
local inputTensor = input
local adjT, adjW, adjH = self.adjT, self.adjW, self.adjH
-- The input can be a table where the second element indicates the target
-- output size, in which case the adj factors are computed automatically
if torch.type(inputTensor) == 'table' then
inputTensor = input[1]
local targetTensor = input[2]
local tDims = targetTensor:dim()
local tT = targetTensor:size(tDims-2)
local tH = targetTensor:size(tDims-1)
local tW = targetTensor:size(tDims)
adjT = calculateAdj(tT, self.kT, self.padT, self.dT)
adjW = calculateAdj(tW, self.kW, self.padW, self.dW)
adjH = calculateAdj(tH, self.kH, self.padH, self.dH)
end
inputTensor.THNN.VolumetricFullConvolution_accGradParameters(
inputTensor:cdata(),
gradOutput:cdata(),
self.gradWeight:cdata(),
THNN.optionalTensor(self.gradBias),
self.finput:cdata(),
self.fgradInput:cdata(),
self.dT, self.dW, self.dH,
self.padT, self.padW, self.padH,
adjT, adjW, adjH,
scale or 1
)
end
function VolumetricFullConvolution:type(type, tensorCache)
self.finput = torch.Tensor()
self.fgradInput = torch.Tensor()
return parent.type(self, type, tensorCache)
end
function VolumetricFullConvolution:__tostring__()
local s = string.format('%s(%d -> %d, %dx%dx%d', torch.type(self),
self.nInputPlane, self.nOutputPlane, self.kT, self.kW, self.kH)
if self.dT ~= 1 or self.dW ~= 1 or self.dH ~= 1 or self.padT ~= 0 or self.padW ~= 0 or self.padH ~= 0 then
s = s .. string.format(', %d,%d,%d', self.dT, self.dW, self.dH)
end
if (self.padT or self.padW or self.padH) and (self.padT ~= 0 or self.padW ~= 0 or self.padH ~= 0) then
s = s .. ', ' .. self.padT .. ',' .. self.padW .. ',' .. self.padH
end
if (self.adjT or self.adjW or self.adjH) and (self.adjT ~= 0 or self.adjW ~= 0 or self.adjH ~= 0) then
s = s .. ', ' .. self.adjT .. ',' .. self.adjW .. ',' .. self.adjH
end
return s .. ')'
end