-
Notifications
You must be signed in to change notification settings - Fork 958
/
Copy pathSpatialConvolutionMM.lua
139 lines (124 loc) · 3.89 KB
/
SpatialConvolutionMM.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
local THNN = require 'nn.THNN'
local SpatialConvolutionMM, parent = torch.class('nn.SpatialConvolutionMM', 'nn.Module')
function SpatialConvolutionMM:__init(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
parent.__init(self)
dW = dW or 1
dH = dH or 1
self.nInputPlane = nInputPlane
self.nOutputPlane = nOutputPlane
self.kW = kW
self.kH = kH
self.dW = dW
self.dH = dH
self.padW = padW or 0
self.padH = padH or self.padW
self.weight = torch.Tensor(nOutputPlane, nInputPlane*kH*kW)
self.bias = torch.Tensor(nOutputPlane)
self.gradWeight = torch.Tensor(nOutputPlane, nInputPlane*kH*kW)
self.gradBias = torch.Tensor(nOutputPlane)
self:reset()
end
function SpatialConvolutionMM:noBias()
self.bias = nil
self.gradBias = nil
return self
end
function SpatialConvolutionMM:reset(stdv)
if stdv then
stdv = stdv * math.sqrt(3)
else
stdv = 1/math.sqrt(self.kW*self.kH*self.nInputPlane)
end
if nn.oldSeed then
self.weight:apply(function()
return torch.uniform(-stdv, stdv)
end)
self.bias:apply(function()
return torch.uniform(-stdv, stdv)
end)
else
self.weight:uniform(-stdv, stdv)
self.bias:uniform(-stdv, stdv)
end
end
function SpatialConvolutionMM:updateOutput(input)
assert(input.THNN, torch.type(input)..'.THNN backend not imported')
self.finput = self.finput or input.new()
self.fgradInput = self.fgradInput or input.new()
-- backward compatibility
if self.padding then
self.padW = self.padding
self.padH = self.padding
self.padding = nil
end
input.THNN.SpatialConvolutionMM_updateOutput(
input:cdata(),
self.output:cdata(),
self.weight:cdata(),
THNN.optionalTensor(self.bias),
self.finput:cdata(),
self.fgradInput:cdata(),
self.kW, self.kH,
self.dW, self.dH,
self.padW, self.padH
)
return self.output
end
function SpatialConvolutionMM:updateGradInput(input, gradOutput)
assert(input.THNN, torch.type(input)..'.THNN backend not imported')
if self.gradInput then
input.THNN.SpatialConvolutionMM_updateGradInput(
input:cdata(),
gradOutput:cdata(),
self.gradInput:cdata(),
self.weight:cdata(),
self.finput:cdata(),
self.fgradInput:cdata(),
self.kW, self.kH,
self.dW, self.dH,
self.padW, self.padH
)
return self.gradInput
end
end
function SpatialConvolutionMM:accGradParameters(input, gradOutput, scale)
assert(input.THNN, torch.type(input)..'.THNN backend not imported')
scale = scale or 1
assert((self.bias and self.gradBias) or (self.bias == nil and self.gradBias == nil))
input.THNN.SpatialConvolutionMM_accGradParameters(
input:cdata(),
gradOutput:cdata(),
self.gradWeight:cdata(),
THNN.optionalTensor(self.gradBias),
self.finput:cdata(),
self.fgradInput:cdata(),
self.kW, self.kH,
self.dW, self.dH,
self.padW, self.padH,
scale
)
end
function SpatialConvolutionMM:type(type,tensorCache)
self.finput = self.finput and torch.Tensor()
self.fgradInput = self.fgradInput and torch.Tensor()
return parent.type(self,type,tensorCache)
end
function SpatialConvolutionMM:__tostring__()
local s = string.format('%s(%d -> %d, %dx%d', torch.type(self),
self.nInputPlane, self.nOutputPlane, self.kW, self.kH)
if self.dW ~= 1 or self.dH ~= 1 or self.padW ~= 0 or self.padH ~= 0 then
s = s .. string.format(', %d,%d', self.dW, self.dH)
end
if (self.padW or self.padH) and (self.padW ~= 0 or self.padH ~= 0) then
s = s .. ', ' .. self.padW .. ',' .. self.padH
end
if self.bias then
return s .. ')'
else
return s .. ') without bias'
end
end
function SpatialConvolutionMM:clearState()
nn.utils.clear(self, 'finput', 'fgradInput', '_input', '_gradOutput')
return parent.clearState(self)
end