-
Notifications
You must be signed in to change notification settings - Fork 958
/
Copy pathSpatialConvolutionLocal.lua
188 lines (171 loc) · 6.59 KB
/
SpatialConvolutionLocal.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
local SpatialConvolutionLocal, parent = torch.class('nn.SpatialConvolutionLocal', 'nn.Module')
function SpatialConvolutionLocal:__init(nInputPlane, nOutputPlane, iW, iH ,kW, kH, dW, dH, padW, padH)
parent.__init(self)
dW = dW or 1
dH = dH or 1
self.nInputPlane = nInputPlane
self.nOutputPlane = nOutputPlane
self.kW = kW
self.kH = kH
self.iW = iW
self.iH = iH
self.dW = dW
self.dH = dH
self.padW = padW or 0
self.padH = padH or self.padW
self.oW = math.floor((self.padW * 2 + iW - self.kW) / self.dW) + 1
self.oH = math.floor((self.padH * 2 + iH - self.kH) / self.dH) + 1
assert(1 <= self.oW and 1 <= self.oH, 'illegal configuration: output width or height less than 1')
self.weight = torch.Tensor(self.oH, self.oW, nOutputPlane, nInputPlane, kH, kW)
self.bias = torch.Tensor(nOutputPlane, self.oH, self.oW)
self.gradWeight = torch.Tensor():resizeAs(self.weight)
self.gradBias = torch.Tensor():resizeAs(self.bias)
self:reset()
end
function SpatialConvolutionLocal:reset(stdv)
if stdv then
stdv = stdv * math.sqrt(3)
else
stdv = 1/math.sqrt(self.kW*self.kH*self.nInputPlane)
end
if nn.oldSeed then
self.weight:apply(function()
return torch.uniform(-stdv, stdv)
end)
self.bias:apply(function()
return torch.uniform(-stdv, stdv)
end)
else
self.weight:uniform(-stdv, stdv)
self.bias:uniform(-stdv, stdv)
end
end
local function viewWeight(self)
self.weight = self.weight:view(self.oH * self.oW, self.nOutputPlane, self.nInputPlane * self.kH * self.kW)
if self.gradWeight and self.gradWeight:dim() > 0 then
self.gradWeight = self.gradWeight:view(self.oH * self.oW, self.nOutputPlane, self.nInputPlane * self.kH * self.kW)
end
end
local function unviewWeight(self)
self.weight = self.weight:view(self.oH, self.oW, self.nOutputPlane, self.nInputPlane, self.kH, self.kW)
if self.gradWeight and self.gradWeight:dim() > 0 then
self.gradWeight = self.gradWeight:view(self.oH, self.oW, self.nOutputPlane, self.nInputPlane, self.kH, self.kW)
end
end
local function checkInputSize(self, input)
if input:nDimension() == 3 then
if input:size(1) ~= self.nInputPlane or input:size(2) ~= self.iH or input:size(3) ~= self.iW then
error(string.format('Given input size: (%dx%dx%d) inconsistent with expected input size: (%dx%dx%d).',
input:size(1), input:size(2), input:size(3), self.nInputPlane, self.iH, self.iW))
end
elseif input:nDimension() == 4 then
if input:size(2) ~= self.nInputPlane or input:size(3) ~= self.iH or input:size(4) ~= self.iW then
error(string.format('Given input size: (%dx%dx%dx%d) inconsistent with expected input size: (batchsize x%dx%dx%d).',
input:size(1), input:size(2), input:size(3), input:size(4), self.nInputPlane, self.iH, self.iW))
end
else
error('3D or 4D(batch mode) tensor expected')
end
end
local function checkOutputSize(self, input, output)
if output:nDimension() ~= input:nDimension() then
error('inconsistent dimension between output and input.')
end
if output:nDimension() == 3 then
if output:size(1) ~= self.nOutputPlane or output:size(2) ~= self.oH or output:size(3) ~= self.oW then
error(string.format('Given output size: (%dx%dx%d) inconsistent with expected output size: (%dx%dx%d).',
output:size(1), output:size(2), output:size(3), self.nOutputPlane, self.oH, self.oW))
end
elseif output:nDimension() == 4 then
if output:size(2) ~= self.nOutputPlane or output:size(3) ~= self.oH or output:size(4) ~= self.oW then
error(string.format('Given output size: (%dx%dx%dx%d) inconsistent with expected output size: (batchsize x%dx%dx%d).',
output:size(1), output:size(2), output:size(3), output:size(4), self.nOutputPlane, self.oH, self.oW))
end
else
error('3D or 4D(batch mode) tensor expected')
end
end
function SpatialConvolutionLocal:updateOutput(input)
self.finput = self.finput or input.new()
self.fgradInput = self.fgradInput or input.new()
checkInputSize(self, input)
viewWeight(self)
input.THNN.SpatialConvolutionLocal_updateOutput(
input:cdata(),
self.output:cdata(),
self.weight:cdata(),
self.bias:cdata(),
self.finput:cdata(),
self.fgradInput:cdata(),
self.kW, self.kH,
self.dW, self.dH,
self.padW, self.padH,
self.iW, self.iH,
self.oW, self.oH
)
unviewWeight(self)
return self.output
end
function SpatialConvolutionLocal:updateGradInput(input, gradOutput)
checkInputSize(self, input)
checkOutputSize(self, input, gradOutput)
if self.gradInput then
viewWeight(self)
input.THNN.SpatialConvolutionLocal_updateGradInput(
input:cdata(),
gradOutput:cdata(),
self.gradInput:cdata(),
self.weight:cdata(),
self.finput:cdata(),
self.fgradInput:cdata(),
self.kW, self.kH,
self.dW, self.dH,
self.padW, self.padH,
self.iW, self.iH,
self.oW, self.oH
)
unviewWeight(self)
return self.gradInput
end
end
function SpatialConvolutionLocal:accGradParameters(input, gradOutput, scale)
scale = scale or 1
checkInputSize(self, input)
checkOutputSize(self, input, gradOutput)
viewWeight(self)
input.THNN.SpatialConvolutionLocal_accGradParameters(
input:cdata(),
gradOutput:cdata(),
self.gradWeight:cdata(),
self.gradBias:cdata(),
self.finput:cdata(),
self.fgradInput:cdata(),
self.kW, self.kH,
self.dW, self.dH,
self.padW, self.padH,
self.iW, self.iH,
self.oW, self.oH,
scale
)
unviewWeight(self)
end
function SpatialConvolutionLocal:type(type,tensorCache)
self.finput = self.finput and torch.Tensor()
self.fgradInput = self.fgradInput and torch.Tensor()
return parent.type(self,type,tensorCache)
end
function SpatialConvolutionLocal:__tostring__()
local s = string.format('%s(%d -> %d, %dx%d, %dx%d', torch.type(self),
self.nInputPlane, self.nOutputPlane, self.iW, self.iH, self.kW, self.kH)
if self.dW ~= 1 or self.dH ~= 1 or self.padW ~= 0 or self.padH ~= 0 then
s = s .. string.format(', %d,%d', self.dW, self.dH)
end
if (self.padW or self.padH) and (self.padW ~= 0 or self.padH ~= 0) then
s = s .. ', ' .. self.padW .. ',' .. self.padH
end
return s .. ')'
end
function SpatialConvolutionLocal:clearState()
nn.utils.clear(self, 'finput', 'fgradInput', '_input', '_gradOutput')
return parent.clearState(self)
end