-
Notifications
You must be signed in to change notification settings - Fork 958
/
Copy pathSparseLinear.lua
242 lines (218 loc) · 7.04 KB
/
SparseLinear.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
local THNN = require 'nn.THNN'
local SparseLinear, parent = torch.class('nn.SparseLinear', 'nn.Module')
local NO_LAST_INPUT = 0
local ONE_LAST_INPUT = 1
local ACC_MULTIPLE_TIMES = 2
function SparseLinear:__init(inputSize, outputSize, doGradInput)
parent.__init(self)
self.weightDecay = 0
self.doGradInput = doGradInput or false
self.weight = torch.Tensor(outputSize, inputSize):zero()
self.bias = torch.Tensor(outputSize):zero()
self.gradWeight = torch.Tensor(outputSize, inputSize):zero()
self.gradBias = torch.Tensor(outputSize):zero()
assert(type(self.doGradInput) == 'boolean')
self.lastInput = nil
self.sparseUpdate = NO_LAST_INPUT
self.formatted_input = nil
-- state
self.gradInput = {}
self.output:resize(outputSize)
self:reset()
end
function SparseLinear:reset(stdv)
if stdv then
stdv = stdv * math.sqrt(3)
else
stdv = 1./math.sqrt(self.weight:size(2))
end
self.weight:uniform(-stdv, stdv)
self.bias:uniform(-stdv, stdv):mul(0.000001)
end
function SparseLinear:reshapeInput(input)
if torch.type(input) == 'table' then
return input, true, false
else
if input:dim() == 2 then
return {input}, false, false
else
return input, true, true
end
end
end
function SparseLinear:updateOutput(input)
if self.sparseUpdate == ONE_LAST_INPUT then
self.sparseUpdate = ACC_MULTIPLE_TIMES
end
local input, batchMode, legacyMode = self:reshapeInput(input)
self.legacyMode = legacyMode
if legacyMode then
input.THNN.SparseLinear_legacyUpdateOutput(
input:cdata(),
self.output:cdata(),
self.weight:cdata(),
self.bias:cdata()
)
else
local nbatches = #input
if nbatches == 0 then
self.output:copy(self.bias)
return self.output
end
local size = 0
local marker = 1
self.formatted_input = self.formatted_input or input[1].new()
for i,v in ipairs(input) do size = size + input[i]:size(1) end
self.formatted_input:resize(size, 3)
for i,v in ipairs(input) do
local buf = self.formatted_input:narrow(1, marker, input[i]:size(1))
buf:narrow(2,2,2):copy(input[i])
buf:select(2,1):fill(i)
marker = marker + input[i]:size(1)
end
self.output:resize(nbatches, self.weight:size(1))
input[1].THNN.SparseLinear_updateOutput(
self.formatted_input:cdata(),
self.output:cdata(),
self.weight:cdata(),
self.bias:cdata()
)
-- fix output size for batchSize = 1
if not batchMode then
self.output = self.output[1]
end
end
return self.output
end
function SparseLinear:accGradParameters(input, gradOutput, scale)
local input, batchMode, legacyMode = self:reshapeInput(input)
self.legacyMode = legacyMode
self.lastInput = self.lastInput or gradOutput.new()
if self.sparseUpdate == NO_LAST_INPUT then
local v = self.formatted_input
if self.legacyMode then v = input end
self.lastInput:resizeAs(v):copy(v)
self.sparseUpdate = ONE_LAST_INPUT
elseif self.sparseUpdate == ONE_LAST_INPUT then
self.sparseUpdate = ACC_MULTIPLE_TIMES
end
if legacyMode then
input.THNN.SparseLinear_legacyAccGradParameters(
input:cdata(),
gradOutput:cdata(),
self.gradWeight:cdata(),
self.gradBias:cdata(),
self.weight:cdata(),
self.bias:cdata(),
self.weightDecay or 0,
scale or 1
)
else
if not batchMode then
gradOutput:resize(1, gradOutput:size(1))
end
local rows = self.formatted_input:select(2, 1)
local cols = self.formatted_input:select(2, 2)
local sortinds = cols * gradOutput:size(1) + rows
local _, inds = sortinds:sort(1, false)
local newinput = self.formatted_input:index(1, inds)
input[1].THNN.SparseLinear_accGradParameters(
newinput:cdata(),
gradOutput:cdata(),
self.gradWeight:cdata(),
self.gradBias:cdata(),
self.weight:cdata(),
self.bias:cdata(),
self.weightDecay or 0,
scale or 1
)
end
end
function SparseLinear:updateGradInput(input, gradOutput)
if self.legacyMode then
if torch.type(self.gradInput) ~= torch.type(gradOutput) then self.gradInput = gradOutput.new() end
self.gradInput:resizeAs(input)
else
self.gradInput = {}
end
if self.doGradInput then
-- GradInput should be dense anyway
local gi
local batchMode = true
if gradOutput:dim() == 1 then
gi = self.weight:t()*gradOutput
batchMode = false
elseif gradOutput:dim() == 2 then
gi = gradOutput*self.weight
end
local ini = self.weight:size(2)
if self.legacyMode then
local batches = self.gradInput:size(1)
self.gradInput:resize(batches, ini, 2)
self.gradInput:select(3,1):copy(torch.repeatTensor(torch.range(1, ini), batches, 1))
self.gradInput:select(3,2):copy(gi)
else
local indicies = torch.range(1, ini)
if not batchMode then gi:resize(1, ini) end
for i = 1,gi:size(1) do
self.gradInput[i] = gradOutput.new(ini, 2)
self.gradInput[i]:select(2, 2):copy(gi[i])
self.gradInput[i]:select(2, 1):range(1, ini)
end
end
end
return self.gradInput
end
-- These functions do sparse updates / zeros. However, if we accumulated
-- gradients multiple times, we can't depend on the last input to do sparse
-- updates.
function SparseLinear:updateParameters(learningRate)
if self.lastInput and self.sparseUpdate == ONE_LAST_INPUT then
if self.legacyMode then
self.lastInput.THNN.SparseLinear_legacyUpdateParameters(
self.weight:cdata(),
self.bias:cdata(),
self.gradWeight:cdata(),
self.gradBias:cdata(),
self.lastInput:cdata(),
learningRate
)
else
self.lastInput.THNN.SparseLinear_updateParameters(
self.weight:cdata(),
self.bias:cdata(),
self.gradWeight:cdata(),
self.gradBias:cdata(),
self.lastInput:cdata(),
learningRate
)
end
else
parent.updateParameters(self, learningRate)
end
end
function SparseLinear:zeroGradParameters()
if self.lastInput and self.sparseUpdate == ONE_LAST_INPUT then
if self.legacyMode then
self.lastInput.THNN.SparseLinear_legacyZeroGradParameters(
self.gradWeight:cdata(),
self.gradBias:cdata(),
self.lastInput:cdata()
)
else
self.lastInput.THNN.SparseLinear_zeroGradParameters(
self.gradWeight:cdata(),
self.gradBias:cdata(),
self.lastInput:cdata()
)
end
else
parent.zeroGradParameters(self)
end
self.sparseUpdate = NO_LAST_INPUT
end
function SparseLinear:clearState()
if self.lastInput then self.lastInput:set() end
input.THNN.SparseLinear_cudaClearState()
return parent.clearState(self)
end