-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo.py
202 lines (151 loc) · 6.4 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
##########################################################################
# Example : DoG saliency demo - [Katramados / Breckon 2011]
# This implementation:
# Copyright (c) 2020 Ryan Lail, Toby Breckon, Durham University, UK
##########################################################################
import cv2
import argparse
import sys
import math
##########################################################################
from saliencyDoG import SaliencyDoG
##########################################################################
if __name__ == "__main__":
keep_processing = True
toggle_saliency = True
toggle_time_info = True
frame_timestamp = 0
# parse command line arguments for camera ID or video file
parser = argparse.ArgumentParser(
description='Perform ' +
sys.argv[0] +
' example operation on incoming camera/video image')
parser.add_argument(
"-c",
"--camera_to_use",
type=int,
help="specify camera to use",
default=0)
parser.add_argument(
"-r",
"--rescale",
type=float,
help="rescale video by this factor",
default=1.0)
parser.add_argument(
"-fs",
"--fullscreen",
action='store_true',
help="run in full screen mode")
parser.add_argument(
"-g",
"--grayscale",
action='store_true',
help="process frames as grayscale")
parser.add_argument(
"-l",
"--low_pass_filter",
action='store_true',
help="apply a low_pass_filter to saliency map")
parser.add_argument(
"-m",
"--multi_layer_map",
action='store_true',
help="use every layer in the production of the saliency map")
parser.add_argument(
'video_file',
metavar='video_file',
type=str,
nargs='?',
help='specify optional video file')
args = parser.parse_args()
##########################################################################
# define video capture object
try:
# to use a non-buffered camera stream (via a separate thread)
if not (args.video_file):
import camera_stream
cap = camera_stream.CameraVideoStream()
else:
cap = cv2.VideoCapture() # not needed for video files
except BaseException:
# if not then just use OpenCV default
print("INFO: camera_stream class not found - camera input may be "
"buffered")
cap = cv2.VideoCapture()
# initialize saliency_mapper
saliency_mapper = SaliencyDoG(ch_3=not (args.grayscale),
low_pass_filter=args.low_pass_filter,
multi_layer_map=args.multi_layer_map)
# define display window name
window_name = "Live Input" # window name
# if command line arguments are provided try to read video_name
# otherwise default to capture from attached camera
if (((args.video_file) and (cap.open(str(args.video_file))))
or (cap.open(args.camera_to_use))):
# create window by name (as resizable)
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
while (keep_processing):
# if camera /video file successfully open then read frame
if (cap.isOpened):
ret, frame = cap.read()
timestamp_latest = cap.get(cv2.CAP_PROP_POS_MSEC)
# check the timestamp of the frame (and skip if not new)
if (timestamp_latest == frame_timestamp):
continue # skip identical frames
else:
cap_fps = 1000 / (timestamp_latest - frame_timestamp)
frame_timestamp = timestamp_latest
# when we reach the end of the video (file) exit cleanly
if (ret == 0):
keep_processing = False
continue
# rescale if specified
if (args.rescale != 1.0):
frame = cv2.resize(
frame, (0, 0), fx=args.rescale, fy=args.rescale)
# start a timer (to see how long processing only takes)
start_t = cv2.getTickCount()
# perform saliency processing via Division of Gaussians
# [Katramados / Breckon 2011]
if toggle_saliency:
frame = saliency_mapper.generate_saliency(frame)
# stop the timer and convert to ms. (to see how long processing and
# display takes)
stop_t = ((cv2.getTickCount() - start_t) /
cv2.getTickFrequency()) * 1000
if toggle_time_info:
label = ('Processing time: %.0f ms' % stop_t) + \
(' [ Max. framerate (processing): %.0f fps' %
(1000 / stop_t)) + ' ]'
cv2.putText(frame, label, (0, 15),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255))
label = ('Supplied framerate (camera): %.0f fps' % cap_fps)
cv2.putText(frame, label, (0, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255))
# display image
cv2.imshow(window_name, frame)
cv2.setWindowProperty(window_name, cv2.WND_PROP_FULLSCREEN,
cv2.WINDOW_FULLSCREEN & args.fullscreen)
# start the event loop + wait 40ms or less depending on
# processing time taken (i.e. 1000ms / 25 fps = 40 ms)
key = cv2.waitKey(max(2, 40 - int(math.ceil(stop_t)))) & 0xFF
# detect specific key strokes by recording which key is pressed
# - "x" - exit
# - "f" - fullscreen
# - "s" - toggle saliency display on/off
# - "t" - toggle fps/time info display
if (key == ord('x')):
keep_processing = False
elif (key == ord('f')):
args.fullscreen = not (args.fullscreen)
elif (key == ord('s')):
toggle_saliency = not (toggle_saliency)
toggle_time_info = not (toggle_time_info)
elif (key == ord('t')):
toggle_time_info = not (toggle_time_info)
# close all windows
cv2.destroyAllWindows()
else:
print("No video file specified or camera connected.")
##########################################################################