-
Notifications
You must be signed in to change notification settings - Fork 226
/
Copy pathclstmocrtrain.cc
224 lines (202 loc) · 7.21 KB
/
clstmocrtrain.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#include "clstm.h"
#include <assert.h>
#include <math.h>
#include <fstream>
#include <iostream>
#include <iostream>
#include <memory>
#include <regex>
#include <set>
#include <sstream>
#include <vector>
#include "clstmhl.h"
#include "extras.h"
#include "pstring.h"
#include "utils.h"
using namespace Eigen;
using namespace ocropus;
using std::vector;
using std::map;
using std::make_pair;
using std::shared_ptr;
using std::unique_ptr;
using std::cout;
using std::ifstream;
using std::set;
using std::to_string;
using std_string = std::string;
using std_wstring = std::wstring;
using std::regex;
using std::regex_replace;
#define string std_string
#define wstring std_wstring
#ifndef NODISPLAY
void show(PyServer &py, Sequence &s, int subplot = 0, int batch = 0) {
Tensor<float, 2> temp;
temp.resize(s.size(), s.rows());
for (int i = 0; i < s.size(); i++)
for (int j = 0; j < s.rows(); j++) temp(i, j) = s[i].v(j, batch);
if (subplot > 0) py.evalf("subplot(%d)", subplot);
py.imshowT(temp, "cmap=cm.hot");
}
#endif
wstring separate_chars(const wstring &s, const wstring &charsep) {
if (charsep == L"") return s;
wstring result;
for (int i = 0; i < s.size(); i++) {
if (i > 0) result.push_back(charsep[0]);
result.push_back(s[i]);
}
return result;
}
struct Dataset {
vector<string> fnames;
wstring charsep = utf8_to_utf32(getsenv("charsep", ""));
int size() { return fnames.size(); }
Dataset() {}
Dataset(string file_list) { readFileList(file_list); }
void readFileList(string file_list) { read_lines(fnames, file_list); }
void getCodec(Codec &codec) {
vector<string> gtnames;
for (auto s : fnames) gtnames.push_back(basename(s) + ".gt.txt");
codec.build(gtnames, charsep);
}
void readSample(Tensor2 &raw, wstring >, int index) {
string fname = fnames[index];
string base = basename(fname);
gt = separate_chars(read_text32(base + ".gt.txt"), charsep);
read_png(raw, fname.c_str());
raw() = -raw() + Float(1);
}
};
pair<double, double> test_set_error(CLSTMOCR &clstm, Dataset &testset) {
double count = 0.0;
double errors = 0.0;
for (int test = 0; test < testset.size(); test++) {
Tensor2 raw;
wstring gt;
testset.readSample(raw, gt, test);
wstring pred = clstm.predict(raw());
count += gt.size();
errors += levenshtein(pred, gt);
}
return make_pair(errors, count);
}
int print_usage(char **argv) {
cerr << "Usage: [VAR=VAL...] " << argv[0] << " TRAININGLIST [TESTLIST]\n";
cerr << "\n";
cerr << " Arguments:\n";
cerr << " TRAININGLIST File with filenames to train with\n";
cerr << " TESTLIST File with filenames to evaluate training\n";
cerr << " \n";
cerr << " Variables:\n";
cerr << " load Filename of model file to load. Default: ''\n";
cerr << " save_name Basename of model file to save. Default: '_ocr'\n";
cerr << " nhidden Number of hidden Default: 100\n";
cerr << " lrate Learning rate. Default: 1e-4\n";
cerr << " momentum Momentum. Default: 0.9\n";
cerr << " target_height Line height to normalize. Default: 48\n";
cerr << " ntrain Number of iterations. Default: 10000000\n";
cerr << " start Initial iteration. Default: -1\n";
cerr << " charsep Separator between characters in ground truth. Default: ''\n";
cerr << " report_time Set to 1 to report time. Default: 0\n";
cerr << " test_every Evaluate model every n-th iteration. Default: 10000\n";
cerr << " report_every Log current state every n-th iteration. Default: 100\n";
cerr << " save_every Save model with iteration as suffix every n-th\n";
cerr << " iteration. Default: 10000\n";
cerr << " display_every Update display every n-th iteration. Requires compilation\n";
cerr << " with 'scons display=1'. Default: 0\n";
cerr << " params Whether to report variable values on read. Default: 1\n";
return EXIT_FAILURE;
}
int main1(int argc, char **argv) {
if (argc < 2 || argc > 3 || !strcmp(argv[1], "-h") || !strcmp(argv[1], "--help"))
return print_usage(argv);
int ntrain = getienv("ntrain", 10000000);
string save_name = getsenv("save_name", "_ocr");
int report_time = getienv("report_time", 0);
Dataset trainingset(argv[1]);
assert(trainingset.size() > 0);
Dataset testset;
if (argc > 2) testset.readFileList(argv[2]);
print("got", trainingset.size(), "files,", testset.size(), "tests");
string load_name = getsenv("load", "");
CLSTMOCR clstm;
if (load_name != "") {
clstm.load(load_name);
} else {
Codec codec;
trainingset.getCodec(codec);
print("got", codec.size(), "classes");
clstm.target_height = int(getrenv("target_height", 48));
clstm.createBidi(codec.codec, getienv("nhidden", 100));
clstm.setLearningRate(getdenv("lrate", 1e-4), getdenv("momentum", 0.9));
}
network_info(clstm.net, "");
double test_error = 9999.0;
double best_error = 1e38;
#ifndef NODISPLAY
PyServer py;
if (display_every > 0) py.open();
#endif
double start_time = now();
int start = clstm.net->attr.get("trial", getienv("start", -1)) + 1;
if (start > 0) print("start", start);
Trigger test_trigger(getienv("test_every", 10000), -1, start);
test_trigger.skip0();
Trigger save_trigger(getienv("save_every", 10000), ntrain, start);
save_trigger.enable(save_name != "").skip0();
Trigger report_trigger(getienv("report_every", 100), ntrain, start);
Trigger display_trigger(getienv("display_every", 0), ntrain, start);
for (int trial = start; trial < ntrain; trial++) {
int sample = lrand48() % trainingset.size();
Tensor2 raw;
wstring gt;
trainingset.readSample(raw, gt, sample);
wstring pred = clstm.train(raw(), gt);
if (report_trigger(trial)) {
print(trial);
print("TRU", gt);
print("ALN", clstm.aligned_utf8());
print("OUT", utf32_to_utf8(pred));
if (trial > 0 && report_time)
print("steptime", (now() - start_time) / report_trigger.since());
start_time = now();
}
#ifndef NODISPLAY
if (display_trigger(trial)) {
py.evalf("clf");
show(py, clstm.net->inputs, 411);
show(py, clstm.net->outputs, 412);
show(py, clstm.targets, 413);
show(py, clstm.aligned, 414);
}
#endif
if (test_trigger(trial)) {
auto tse = test_set_error(clstm, testset);
double errors = tse.first;
double count = tse.second;
test_error = errors / count;
print("ERROR", trial, test_error, " ", errors, count);
if (test_error < best_error) {
best_error = test_error;
string fname = save_name + ".clstm";
print("saving best performing network so far", fname, "error rate: ",
best_error);
clstm.net->attr.set("trial", trial);
clstm.save(fname);
}
}
if (save_trigger(trial)) {
string fname = save_name + "-" + to_string(trial) + ".clstm";
print("saving", fname);
clstm.net->attr.set("trial", trial);
clstm.save(fname);
}
}
return 0;
}
int main(int argc, char **argv) {
TRY { main1(argc, argv); }
CATCH(const char *message) { cerr << "FATAL: " << message << endl; }
}