-
-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathgui_demo.py
134 lines (110 loc) · 6.08 KB
/
gui_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
from tkinter import *
from tkinter import messagebox
import numpy as np
import tensorflow as tf
from models.model_type import MODELS
from utils import visualization
from utils.data_utils import DatasetVectorizer
from utils.other_utils import init_config
from utils.other_utils import logger
GUI_FONT_SIZE = 14
SAMPLE_SENTENCE1 = 'Wet brown dog swims towards camera.'
SAMPLE_SENTENCE2 = 'A dog is in the water.'
class MultiheadSiameseNetGuiDemo:
def __init__(self, master):
self.frame = master
self.frame.title('Multihead Siamese Nets')
sample1 = StringVar(master, value=SAMPLE_SENTENCE1)
sample2 = StringVar(master, value=SAMPLE_SENTENCE2)
self.first_sentence_entry = Entry(self.frame, width=50,
font="Helvetica {}".format(GUI_FONT_SIZE),
textvariable=sample1)
self.second_sentence_entry = Entry(self.frame, width=50,
font="Helvetica {}".format(GUI_FONT_SIZE),
textvariable=sample2)
self.predictButton = Button(self.frame, text='Predict',
font="Helvetica {}".format(GUI_FONT_SIZE),
command=self.predict)
self.clearButton = Button(self.frame, text='Clear', command=self.clear,
font="Helvetica {}".format(GUI_FONT_SIZE))
self.resultLabel = Label(self.frame, text='Result',
font="Helvetica {}".format(GUI_FONT_SIZE))
self.first_sentence_label = Label(self.frame, text='Sentence 1',
font="Helvetica {}".format(GUI_FONT_SIZE))
self.second_sentence_label = Label(self.frame, text='Sentence 2',
font="Helvetica {}".format(GUI_FONT_SIZE))
self.main_config = init_config()
self.model_dir = str(self.main_config['DATA']['model_dir'])
model_dirs = [os.path.basename(x[0]) for x in os.walk(self.model_dir)]
self.visualize_attentions = IntVar()
self.visualize_attentions_checkbox = Checkbutton(master, text="Visualize attention weights",
font="Helvetica {}".format(
int(GUI_FONT_SIZE / 2)),
variable=self.visualize_attentions,
onvalue=1, offvalue=0)
variable = StringVar(master)
variable.set('Choose a model...')
self.model_type = OptionMenu(master, variable, *model_dirs, command=self.load_model)
self.model_type.configure(font=('Helvetica', GUI_FONT_SIZE))
self.first_sentence_entry.grid(row=0, column=1, columnspan=4)
self.first_sentence_label.grid(row=0, column=0, sticky=E)
self.second_sentence_entry.grid(row=1, column=1, columnspan=4)
self.second_sentence_label.grid(row=1, column=0, sticky=E)
self.model_type.grid(row=2, column=1, sticky=W + E, ipady=1)
self.predictButton.grid(row=2, column=2, sticky=W + E, ipady=1)
self.clearButton.grid(row=2, column=3, sticky=W + E, ipady=1)
self.resultLabel.grid(row=2, column=4, sticky=W + E, ipady=1)
self.vectorizer = DatasetVectorizer(self.model_dir)
self.max_doc_len = self.vectorizer.max_sentence_len
self.vocabulary_size = self.vectorizer.vocabulary_size
self.session = tf.Session()
self.model = None
def predict(self):
if self.model:
sentence1 = self.first_sentence_entry.get()
sentence2 = self.second_sentence_entry.get()
x1_sen = self.vectorizer.vectorize(sentence1)
x2_sen = self.vectorizer.vectorize(sentence2)
feed_dict = {self.model.x1: x1_sen, self.model.x2: x2_sen,
self.model.is_training: False}
if self.visualize_attentions.get():
prediction, at1, at2 = np.squeeze(
self.session.run(
[self.model.predictions, self.model.debug_vars['attentions_x1'],
self.model.debug_vars['attentions_x2']], feed_dict=feed_dict))
visualization.visualize_attention_weights(at1, sentence1)
visualization.visualize_attention_weights(at2, sentence2)
else:
prediction = np.squeeze(
self.session.run(self.model.predictions, feed_dict=feed_dict))
prediction = np.round(prediction, 2)
self.resultLabel['text'] = prediction
if prediction < 0.5:
self.resultLabel.configure(foreground="red")
else:
self.resultLabel.configure(foreground="green")
else:
messagebox.showerror("Error", "Choose a model to make a prediction.")
def clear(self):
self.first_sentence_entry.delete(0, 'end')
self.second_sentence_entry.delete(0, 'end')
self.resultLabel['text'] = ''
def load_model(self, model_name):
if 'multihead' in model_name:
self.visualize_attentions_checkbox.grid(row=2, column=0, sticky=W + E, ipady=1)
else:
self.visualize_attentions_checkbox.grid_forget()
tf.reset_default_graph()
self.session = tf.Session()
logger.info('Loading model: %s', model_name)
model = MODELS[model_name.split('_')[0]]
model_config = init_config(model_name.split('_')[0])
self.model = model(self.max_doc_len, self.vocabulary_size, self.main_config, model_config)
saver = tf.train.Saver()
last_checkpoint = tf.train.latest_checkpoint('{}/{}'.format(self.model_dir, model_name))
saver.restore(self.session, last_checkpoint)
logger.info('Loaded model from: %s', last_checkpoint)
root = Tk()
gui = MultiheadSiameseNetGuiDemo(root)
root.mainloop()