-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathP_rave.py
304 lines (250 loc) · 11.2 KB
/
P_rave.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
"""RAVE: using predicitve inforamtion bottleneck framework to learn RCs
to enhance the sampling of MD simulation. Code maintained by Yihang.
Read and cite the following when using this method:
https://aip.scitation.org/doi/abs/10.1063/1.5025487
https://www.nature.com/articles/s41467-019-11405-4
https://arxiv.org/abs/2002.06099
"""
import numpy as np
import COLVAR2npy
import Analyze_prave
from keras import backend as K
from keras.models import Model
from keras.layers import Input, Dense, Lambda
from keras.initializers import RandomUniform, Constant
from keras.optimizers import RMSprop
from keras.constraints import unit_norm
from keras import regularizers
from keras.callbacks import Callback
from keras.losses import mean_squared_error
########################
### Global Functions ###
def data_prep(system_name, number_trajs, predictive_step):
""" Read the input trajectory files.
Prepare x, x_t trajectory and corresponding reweighting factors
Parameters
----------
system_name : string
Name of the sytem.
number_trajs : int
Number of trajectories.
predictive_step : int
Predictive time delay.
Returns
-------
X : np.array
present trajectory.
Y : np.array
future trajectory.
W1 : np.array
reweighting factores in objective function before P(X_t | \chi )
W2 : np.array
reweighting factores in objective function before P(X | \chi )
"""
for j in range(number_trajs):
traj_file_name = 'input/x_'+system_name+'_%i.npy'%j #present trajecotry of the shape n*d, where n is the MD steps and d is the number of order parameters
w_file_name = 'input/w_'+system_name+'_%i.npy'%j #weights correspond to trajecotry in x. Calculated by exp(beta*V)
if predictive_step==0:
x = np.load(traj_file_name)
y = x[:,:]
w1 = np.load(w_file_name)
w2 = np.zeros( np.shape(w1) )
else:
x = np.load(traj_file_name)
y = x[predictive_step: , :]
x = x[:-predictive_step, :]
w = np.load(w_file_name)
w_x = w[:-predictive_step]
w_y = w[predictive_step:]
w1 = ( w_x * w_y )**0.5
w2 = w_x**0.5*( w_x**0.5- w_y**0.5)
try:
X = np.append(X, x, axis = 0)
Y = np.append(Y, y, axis = 0)
W1 = np.append(W1, w1, axis = 0)
W2 = np.append(W2, w2, axis = 0)
except:
X = x
Y = y
W1 = w1
W2 = w2
normaliztion_factor = np.sum(W1)/len(W1)
W1 /= normaliztion_factor
W2 /= normaliztion_factor
print('length of data:%i'%np.shape(X)[0] )
print('number of order parameters:%i'%np.shape(X)[1] )
print('min reweighting factor:%f'%np.min(W1))
print('max reweighting factor:%f'%np.max(W1))
return X, Y, W1, W2
def random_pick(x, x_dt, w1, w2, training_len):
""" ramdomly pick (x, x_dt) pair from data set
Parameters
----------
x : np.array
present trajectory.
x_dt : np.array
future trajectory.
w1 : np.array
reweighting factores in objective function before P(X_t | \chi )
w2 : np.array
reweighting factores in objective function before P(X | \chi )
training_len: int
length of the return data set
Returns
-------
x1 : np.array
ramdonly selected data pionts from present trajectory.
x2 : np.array
future trajectory corresponds to selected data points in x1.
w1 : np.array
coressponding reweighting factores in objective function before P(X_t | \chi )
w1 : np.array
coressponding reweighting factores in objective function before P(X | \chi )
"""
indices = np.arange( np.shape(x)[0])
np.random.shuffle(indices)
indices = indices[:training_len]
x = x[indices, :]
x_dt = x_dt[indices, :]
w1 = w1[indices]
w2 = w2[indices]
print('%i data points are used in this training'%len(indices))
return x, x_dt, w1, w2
def scaling(x):
""" make order parametes with mean 0 and variance 1
return new order parameter and scaling factors
Parameters
----------
x : np.array
order parameters
Returns
----------
x : np.array
order parameters after rescaling
std_x : np.array
resclaing factors of each OPs
"""
x = x-np.mean(x, axis =0)
std_x = np.std(x, axis =0)
return x/std_x, std_x
def sampling(args):
"""Sample the latent variable
from a Normal distribution."""
s_mean= args
epsilon = K.random_normal(shape=(batch_size,rc_dim), mean=0.0, stddev=s_vari )
s_noise = s_mean + epsilon
return s_noise
def dynamic_correction_loss(x, w1, w2):
"""loss function with dynamic correction"""
def custom_loss(y_true, y_pred ):
ce1 = mean_squared_error(y_true, y_pred )
ce2 = mean_squared_error(x, y_pred)
return (w1[:,0]*ce1+w2[:,0]*ce2)
return custom_loss
class WeightsHistory(Callback):
def on_train_begin(self, logs={}):
self.losses = []
self.losses_vali = []
self.weights0 = []
def on_epoch_end(self, epoch, logs={}):
self.losses.append(logs.get('loss'))
self.losses_vali.append(logs.get('val_loss'))
self.weights0.append( prave.layers[1].get_weights())
#########################
if __name__ == '__main__':
### Global Variables ###
#system info
system_name = '6e1u_1'
n_trajs = 4 #number of trajectories
save_path = 'output/' #pth to the directory that saves output files
T = 300 #Temperature in unit of Kelvin
bias = True #When false reweigting factors are set to 1.
#When true, reweigting factors are calculated and save
###predictive time delay ###
time_delay= list(range(0, 100, 10)) #predictive time delay
#network variables
training_size = 10240000 # if training_size = n, only n data points will be randomly piked from the whole data set and used to do the training
batch_size = 2048 #total number of training data point n should be a multiple of batch_size
op_dim = 3 #dimensionality of order parameters
rc_dim = 2 #dimensionality of reaction coordinates
int_dim = 128 #number of cells in each layer
s_vari = 0.005
learning_rate = 0.0002
decay = 0.0
trials = range(4)
epochs = 20 #Number of epochs to train the model
random_uniform = RandomUniform(minval=-0.05, maxval=0.05)
set_constant = Constant(value = 0.5**0.5)
if_whiten = True
#convert COLVAR file to npy file
for traj_index in range(n_trajs):
COLVAR2npy.COLVAR2npy( system_name+'_%i'%traj_index, T, op_dim, 'input/', bias )
### set predictive time delay ###
if not bias:
system_name = 'unbiased_' + system_name
########################
for dt in time_delay:
########################
### load the dataset ###
(x, y, w1, w2) = data_prep( system_name, n_trajs, dt )
if if_whiten:
x, scaling_factors = scaling(x)
y -= np.mean( y, axis =0)
y /= scaling_factors
else:
scaling_factors = np.ones( op_dim )
############################
### run different trials ###
for trial in trials:
Result = []
############################################
### Variational Autoencoder architecture ###
input_Data = Input(batch_shape=(batch_size, op_dim))
input_w1 = Input(shape=(1,))
input_w2 = Input(shape=(1,))
linear_encoder = Dense( rc_dim, activation=None, use_bias=None, kernel_regularizer=regularizers.l1(0.0), kernel_initializer='random_uniform', kernel_constraint = unit_norm(axis=0))(input_Data)
s = Lambda(sampling)(linear_encoder)
hidden_a = Dense(int_dim, activation='elu', kernel_initializer='random_uniform')(s)
hidden_b = Dense(int_dim, activation='elu', kernel_initializer='random_uniform')(hidden_a)
y_reconstruction = Dense( op_dim, activation=None, kernel_initializer='random_uniform')(hidden_b)
#########################################
### Randomly pick samples from dataset ###
#data for training
train_x, train_y, train_w1, train_w2 = random_pick(x, y, w1, w2,training_size)
#data for validation
vali_x, vali_y, vali_w1, vali_w2 = random_pick(x , y, w1, w2, training_size)
#############################################
### Prepare the PRAVE and train the PRVAE ###
prave = Model([input_Data, input_w1 , input_w2] ,y_reconstruction)
rmsprop = RMSprop(lr=learning_rate, decay = decay)
prave.compile(optimizer=rmsprop,loss=dynamic_correction_loss(input_Data, input_w1, input_w2))
history = WeightsHistory()
History = prave.fit( [train_x,train_w1,train_w2], train_y,
shuffle=True,
epochs=epochs,
batch_size=batch_size,
validation_data=([vali_x,vali_w1,vali_w2], vali_y),
callbacks = [history ] )
####################
### Save results ###
Loss = np.array( history.losses )
Val_Loss = np.array( history.losses_vali )
Weights0=np.array( history.weights0 )[:,0,:,:]
#w_norm = np.linalg.norm(Weights0, axis=1)
for op_index in range( op_dim ):
Weights0[:,op_index,:]/=scaling_factors[op_index] #recale back to rc weights of non-whitenting ops
for rc_index in range( rc_dim ):
Weights0[:, :, rc_index]= np.transpose( np.transpose( Weights0[:, :, rc_index] )/np.linalg.norm(Weights0[:, :, rc_index], axis=1)) #normalize the rc weights
Loss = np.expand_dims(Loss, axis=-1)
Val_Loss = np.expand_dims(Val_Loss, axis=-1)
result_loss = np.concatenate((Loss, Val_Loss) , axis =-1)
result_weights = Weights0
K.clear_session()
print('!!!!')
print(np.shape(result_weights))
network_info = '_int_dim'+str(int_dim)+'_lr'+str(learning_rate)+'_decay'+str(decay)+'_batch_size'+str(batch_size)
save_info = system_name+'_dt'+str(dt)+'_trail'+str(trial)+'_svar'+str(s_vari)+'_train_size'+str(training_size)+network_info
np.save(save_path+'Loss_'+save_info, result_loss)
np.save(save_path+'Weights_'+save_info, result_weights)
### analyze and svae the results ###
Analyze_prave.save_result(system_name, op_dim, time_delay, trials, s_vari, training_size, network_info, save_path)