diff --git a/tig-algorithms/src/satisfiability/mod.rs b/tig-algorithms/src/satisfiability/mod.rs index 22d6805c..f295f6c3 100644 --- a/tig-algorithms/src/satisfiability/mod.rs +++ b/tig-algorithms/src/satisfiability/mod.rs @@ -80,7 +80,8 @@ // c001_a041 -// c001_a042 +pub mod sat_adaptive; +pub use sat_adaptive as c001_a042; // c001_a043 diff --git a/tig-algorithms/src/satisfiability/sat_adaptive/benchmarker_outbound.rs b/tig-algorithms/src/satisfiability/sat_adaptive/benchmarker_outbound.rs new file mode 100644 index 00000000..f3dc67c4 --- /dev/null +++ b/tig-algorithms/src/satisfiability/sat_adaptive/benchmarker_outbound.rs @@ -0,0 +1,315 @@ +/*! +Copyright 2024 syebastian + +Licensed under the TIG Benchmarker Outbound Game License v1.0 (the "License"); you +may not use this file except in compliance with the License. You may obtain a copy +of the License at + +https://github.com/tig-foundation/tig-monorepo/tree/main/docs/licenses + +Unless required by applicable law or agreed to in writing, software distributed +under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR +CONDITIONS OF ANY KIND, either express or implied. See the License for the specific +language governing permissions and limitations under the License. +*/ + +use rand::{rngs::{SmallRng, StdRng}, Rng, SeedableRng}; +use std::collections::HashMap; +use tig_challenges::satisfiability::*; + +pub fn solve_challenge(challenge: &Challenge) -> anyhow::Result> { + let mut rng = SmallRng::seed_from_u64(u64::from_le_bytes(challenge.seed[..8].try_into().unwrap()) as u64); + + let mut p_single = vec![false; challenge.difficulty.num_variables]; + let mut n_single = vec![false; challenge.difficulty.num_variables]; + + let mut clauses_ = challenge.clauses.clone(); + let mut clauses: Vec> = Vec::with_capacity(clauses_.len()); + + let mut rounds = 0; + + let mut dead = false; + + while !(dead) { + let mut done = true; + for c in &clauses_ { + let mut c_: Vec = Vec::with_capacity(c.len()); // Preallocate with capacity + let mut skip = false; + for (i, l) in c.iter().enumerate() { + if (p_single[(l.abs() - 1) as usize] && *l > 0) + || (n_single[(l.abs() - 1) as usize] && *l < 0) + || c[(i + 1)..].contains(&-l) + { + skip = true; + break; + } else if p_single[(l.abs() - 1) as usize] + || n_single[(l.abs() - 1) as usize] + || c[(i + 1)..].contains(&l) + { + done = false; + continue; + } else { + c_.push(*l); + } + } + if skip { + done = false; + continue; + }; + match c_[..] { + [l] => { + done = false; + if l > 0 { + if n_single[(l.abs() - 1) as usize] { + dead = true; + break; + } else { + p_single[(l.abs() - 1) as usize] = true; + } + } else { + if p_single[(l.abs() - 1) as usize] { + dead = true; + break; + } else { + n_single[(l.abs() - 1) as usize] = true; + } + } + } + [] => { + dead = true; + break; + } + _ => { + clauses.push(c_); + } + } + } + if done { + break; + } else { + clauses_ = clauses; + clauses = Vec::with_capacity(clauses_.len()); + } + } + + if dead { + return Ok(None); + } + + let num_variables = challenge.difficulty.num_variables; + let num_clauses = clauses.len(); + + let mut p_clauses: Vec> = vec![Vec::new(); num_variables]; + let mut n_clauses: Vec> = vec![Vec::new(); num_variables]; + + // Preallocate capacity for p_clauses and n_clauses + for c in &clauses { + for &l in c { + let var = (l.abs() - 1) as usize; + if l > 0 { + if p_clauses[var].capacity() == 0 { + p_clauses[var] = Vec::with_capacity(clauses.len() / num_variables + 1); + } + } else { + if n_clauses[var].capacity() == 0 { + n_clauses[var] = Vec::with_capacity(clauses.len() / num_variables + 1); + } + } + } + } + + for (i, &ref c) in clauses.iter().enumerate() { + for &l in c { + let var = (l.abs() - 1) as usize; + if l > 0 { + p_clauses[var].push(i); + } else { + n_clauses[var].push(i); + } + } + } + + let mut variables = vec![false; num_variables]; + for v in 0..num_variables { + let num_p = p_clauses[v].len(); + let num_n = n_clauses[v].len(); + + let nad = 1.28; + let mut vad = nad + 1.0; + if num_n > 0 { + vad = num_p as f32 / num_n as f32; + } + + if vad <= nad { + variables[v] = false; + } else { + let prob = num_p as f64 / (num_p + num_n).max(1) as f64; + variables[v] = rng.gen_bool(prob) + } + } + + let mut num_good_so_far: Vec = vec![0; num_clauses]; + for (i, &ref c) in clauses.iter().enumerate() { + for &l in c { + let var = (l.abs() - 1) as usize; + if l > 0 && variables[var] { + num_good_so_far[i] += 1 + } else if l < 0 && !variables[var] { + num_good_so_far[i] += 1 + } + } + } + + + let mut residual_ = Vec::with_capacity(num_clauses); + let mut residual_indices = vec![None; num_clauses]; + + for (i, &num_good) in num_good_so_far.iter().enumerate() { + if num_good == 0 { + residual_.push(i); + residual_indices[i] = Some(residual_.len() - 1); + } + } + + let base_prob = 0.52; + let mut current_prob = base_prob; + let check_interval = 50; + let mut last_check_residual = residual_.len(); + + let clauses_ratio = challenge.difficulty.clauses_to_variables_percent as f64; + let num_vars = challenge.difficulty.num_variables as f64; + let max_fuel = 2000000000.0; + let base_fuel = (2000.0 + 40.0 * clauses_ratio) * num_vars; + let flip_fuel = 350.0 + 0.9 * clauses_ratio; + let max_num_rounds = ((max_fuel - base_fuel) / flip_fuel) as usize; + loop { + if !residual_.is_empty() { + + let rand_val = rng.gen::(); + + let i = residual_[rand_val % residual_.len()]; + let mut min_sad = clauses.len(); + let mut v_min_sad = usize::MAX; + let c = &mut clauses[i]; + + if c.len() > 1 { + let random_index = rand_val % c.len(); + c.swap(0, random_index); + } + for &l in c.iter() { + let abs_l = l.abs() as usize - 1; + let clauses_to_check = if variables[abs_l] { &p_clauses[abs_l] } else { &n_clauses[abs_l] }; + + let mut sad = 0; + for &c in clauses_to_check { + if num_good_so_far[c] == 1 { + sad += 1; + } + } + + if sad < min_sad { + min_sad = sad; + v_min_sad = abs_l; + } + } + + if rounds % check_interval == 0 { + let progress = last_check_residual as i64 - residual_.len() as i64; + let progress_ratio = progress as f64 / last_check_residual as f64; + + let progress_threshold = 0.2 + 0.1 * f64::min(1.0, (clauses_ratio - 410.0) / 15.0); + + if progress <= 0 { + let prob_adjustment = 0.025 * (-progress as f64 / last_check_residual as f64).min(1.0); + current_prob = (current_prob + prob_adjustment).min(0.9); + } else if progress_ratio > progress_threshold { + current_prob = base_prob; + } else { + current_prob = current_prob * 0.8 + base_prob * 0.2; + } + + last_check_residual = residual_.len(); + } + + let v = if min_sad == 0 { + v_min_sad + } else if rng.gen_bool(current_prob) { + c[0].abs() as usize - 1 + } else { + v_min_sad + }; + + if variables[v] { + for &c in &n_clauses[v] { + num_good_so_far[c] += 1; + if num_good_so_far[c] == 1 { + let i = residual_indices[c].take().unwrap(); + let last = residual_.pop().unwrap(); + if i < residual_.len() { + residual_[i] = last; + residual_indices[last] = Some(i); + } + } + } + for &c in &p_clauses[v] { + if num_good_so_far[c] == 1 { + residual_.push(c); + residual_indices[c] = Some(residual_.len() - 1); + } + num_good_so_far[c] -= 1; + } + } else { + for &c in &n_clauses[v] { + if num_good_so_far[c] == 1 { + residual_.push(c); + residual_indices[c] = Some(residual_.len() - 1); + } + num_good_so_far[c] -= 1; + } + + for &c in &p_clauses[v] { + num_good_so_far[c] += 1; + if num_good_so_far[c] == 1 { + let i = residual_indices[c].take().unwrap(); + let last = residual_.pop().unwrap(); + if i < residual_.len() { + residual_[i] = last; + residual_indices[last] = Some(i); + } + } + } + } + + variables[v] = !variables[v]; + } else { + break; + } + rounds += 1; + if rounds >= max_num_rounds { + return Ok(None); + } + } + return Ok(Some(Solution { variables })); +} + +#[cfg(feature = "cuda")] +mod gpu_optimisation { + use super::*; + use cudarc::driver::*; + use std::{collections::HashMap, sync::Arc}; + use tig_challenges::CudaKernel; + + // set KERNEL to None if algorithm only has a CPU implementation + pub const KERNEL: Option = None; + + // Important! your GPU and CPU version of the algorithm should return the same result + pub fn cuda_solve_challenge( + challenge: &Challenge, + dev: &Arc, + mut funcs: HashMap<&'static str, CudaFunction>, + ) -> anyhow::Result> { + solve_challenge(challenge) + } +} +#[cfg(feature = "cuda")] +pub use gpu_optimisation::{cuda_solve_challenge, KERNEL}; diff --git a/tig-algorithms/src/satisfiability/sat_adaptive/commercial.rs b/tig-algorithms/src/satisfiability/sat_adaptive/commercial.rs new file mode 100644 index 00000000..324e53fa --- /dev/null +++ b/tig-algorithms/src/satisfiability/sat_adaptive/commercial.rs @@ -0,0 +1,315 @@ +/*! +Copyright 2024 syebastian + +Licensed under the TIG Commercial License v1.0 (the "License"); you +may not use this file except in compliance with the License. You may obtain a copy +of the License at + +https://github.com/tig-foundation/tig-monorepo/tree/main/docs/licenses + +Unless required by applicable law or agreed to in writing, software distributed +under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR +CONDITIONS OF ANY KIND, either express or implied. See the License for the specific +language governing permissions and limitations under the License. +*/ + +use rand::{rngs::{SmallRng, StdRng}, Rng, SeedableRng}; +use std::collections::HashMap; +use tig_challenges::satisfiability::*; + +pub fn solve_challenge(challenge: &Challenge) -> anyhow::Result> { + let mut rng = SmallRng::seed_from_u64(u64::from_le_bytes(challenge.seed[..8].try_into().unwrap()) as u64); + + let mut p_single = vec![false; challenge.difficulty.num_variables]; + let mut n_single = vec![false; challenge.difficulty.num_variables]; + + let mut clauses_ = challenge.clauses.clone(); + let mut clauses: Vec> = Vec::with_capacity(clauses_.len()); + + let mut rounds = 0; + + let mut dead = false; + + while !(dead) { + let mut done = true; + for c in &clauses_ { + let mut c_: Vec = Vec::with_capacity(c.len()); // Preallocate with capacity + let mut skip = false; + for (i, l) in c.iter().enumerate() { + if (p_single[(l.abs() - 1) as usize] && *l > 0) + || (n_single[(l.abs() - 1) as usize] && *l < 0) + || c[(i + 1)..].contains(&-l) + { + skip = true; + break; + } else if p_single[(l.abs() - 1) as usize] + || n_single[(l.abs() - 1) as usize] + || c[(i + 1)..].contains(&l) + { + done = false; + continue; + } else { + c_.push(*l); + } + } + if skip { + done = false; + continue; + }; + match c_[..] { + [l] => { + done = false; + if l > 0 { + if n_single[(l.abs() - 1) as usize] { + dead = true; + break; + } else { + p_single[(l.abs() - 1) as usize] = true; + } + } else { + if p_single[(l.abs() - 1) as usize] { + dead = true; + break; + } else { + n_single[(l.abs() - 1) as usize] = true; + } + } + } + [] => { + dead = true; + break; + } + _ => { + clauses.push(c_); + } + } + } + if done { + break; + } else { + clauses_ = clauses; + clauses = Vec::with_capacity(clauses_.len()); + } + } + + if dead { + return Ok(None); + } + + let num_variables = challenge.difficulty.num_variables; + let num_clauses = clauses.len(); + + let mut p_clauses: Vec> = vec![Vec::new(); num_variables]; + let mut n_clauses: Vec> = vec![Vec::new(); num_variables]; + + // Preallocate capacity for p_clauses and n_clauses + for c in &clauses { + for &l in c { + let var = (l.abs() - 1) as usize; + if l > 0 { + if p_clauses[var].capacity() == 0 { + p_clauses[var] = Vec::with_capacity(clauses.len() / num_variables + 1); + } + } else { + if n_clauses[var].capacity() == 0 { + n_clauses[var] = Vec::with_capacity(clauses.len() / num_variables + 1); + } + } + } + } + + for (i, &ref c) in clauses.iter().enumerate() { + for &l in c { + let var = (l.abs() - 1) as usize; + if l > 0 { + p_clauses[var].push(i); + } else { + n_clauses[var].push(i); + } + } + } + + let mut variables = vec![false; num_variables]; + for v in 0..num_variables { + let num_p = p_clauses[v].len(); + let num_n = n_clauses[v].len(); + + let nad = 1.28; + let mut vad = nad + 1.0; + if num_n > 0 { + vad = num_p as f32 / num_n as f32; + } + + if vad <= nad { + variables[v] = false; + } else { + let prob = num_p as f64 / (num_p + num_n).max(1) as f64; + variables[v] = rng.gen_bool(prob) + } + } + + let mut num_good_so_far: Vec = vec![0; num_clauses]; + for (i, &ref c) in clauses.iter().enumerate() { + for &l in c { + let var = (l.abs() - 1) as usize; + if l > 0 && variables[var] { + num_good_so_far[i] += 1 + } else if l < 0 && !variables[var] { + num_good_so_far[i] += 1 + } + } + } + + + let mut residual_ = Vec::with_capacity(num_clauses); + let mut residual_indices = vec![None; num_clauses]; + + for (i, &num_good) in num_good_so_far.iter().enumerate() { + if num_good == 0 { + residual_.push(i); + residual_indices[i] = Some(residual_.len() - 1); + } + } + + let base_prob = 0.52; + let mut current_prob = base_prob; + let check_interval = 50; + let mut last_check_residual = residual_.len(); + + let clauses_ratio = challenge.difficulty.clauses_to_variables_percent as f64; + let num_vars = challenge.difficulty.num_variables as f64; + let max_fuel = 2000000000.0; + let base_fuel = (2000.0 + 40.0 * clauses_ratio) * num_vars; + let flip_fuel = 350.0 + 0.9 * clauses_ratio; + let max_num_rounds = ((max_fuel - base_fuel) / flip_fuel) as usize; + loop { + if !residual_.is_empty() { + + let rand_val = rng.gen::(); + + let i = residual_[rand_val % residual_.len()]; + let mut min_sad = clauses.len(); + let mut v_min_sad = usize::MAX; + let c = &mut clauses[i]; + + if c.len() > 1 { + let random_index = rand_val % c.len(); + c.swap(0, random_index); + } + for &l in c.iter() { + let abs_l = l.abs() as usize - 1; + let clauses_to_check = if variables[abs_l] { &p_clauses[abs_l] } else { &n_clauses[abs_l] }; + + let mut sad = 0; + for &c in clauses_to_check { + if num_good_so_far[c] == 1 { + sad += 1; + } + } + + if sad < min_sad { + min_sad = sad; + v_min_sad = abs_l; + } + } + + if rounds % check_interval == 0 { + let progress = last_check_residual as i64 - residual_.len() as i64; + let progress_ratio = progress as f64 / last_check_residual as f64; + + let progress_threshold = 0.2 + 0.1 * f64::min(1.0, (clauses_ratio - 410.0) / 15.0); + + if progress <= 0 { + let prob_adjustment = 0.025 * (-progress as f64 / last_check_residual as f64).min(1.0); + current_prob = (current_prob + prob_adjustment).min(0.9); + } else if progress_ratio > progress_threshold { + current_prob = base_prob; + } else { + current_prob = current_prob * 0.8 + base_prob * 0.2; + } + + last_check_residual = residual_.len(); + } + + let v = if min_sad == 0 { + v_min_sad + } else if rng.gen_bool(current_prob) { + c[0].abs() as usize - 1 + } else { + v_min_sad + }; + + if variables[v] { + for &c in &n_clauses[v] { + num_good_so_far[c] += 1; + if num_good_so_far[c] == 1 { + let i = residual_indices[c].take().unwrap(); + let last = residual_.pop().unwrap(); + if i < residual_.len() { + residual_[i] = last; + residual_indices[last] = Some(i); + } + } + } + for &c in &p_clauses[v] { + if num_good_so_far[c] == 1 { + residual_.push(c); + residual_indices[c] = Some(residual_.len() - 1); + } + num_good_so_far[c] -= 1; + } + } else { + for &c in &n_clauses[v] { + if num_good_so_far[c] == 1 { + residual_.push(c); + residual_indices[c] = Some(residual_.len() - 1); + } + num_good_so_far[c] -= 1; + } + + for &c in &p_clauses[v] { + num_good_so_far[c] += 1; + if num_good_so_far[c] == 1 { + let i = residual_indices[c].take().unwrap(); + let last = residual_.pop().unwrap(); + if i < residual_.len() { + residual_[i] = last; + residual_indices[last] = Some(i); + } + } + } + } + + variables[v] = !variables[v]; + } else { + break; + } + rounds += 1; + if rounds >= max_num_rounds { + return Ok(None); + } + } + return Ok(Some(Solution { variables })); +} + +#[cfg(feature = "cuda")] +mod gpu_optimisation { + use super::*; + use cudarc::driver::*; + use std::{collections::HashMap, sync::Arc}; + use tig_challenges::CudaKernel; + + // set KERNEL to None if algorithm only has a CPU implementation + pub const KERNEL: Option = None; + + // Important! your GPU and CPU version of the algorithm should return the same result + pub fn cuda_solve_challenge( + challenge: &Challenge, + dev: &Arc, + mut funcs: HashMap<&'static str, CudaFunction>, + ) -> anyhow::Result> { + solve_challenge(challenge) + } +} +#[cfg(feature = "cuda")] +pub use gpu_optimisation::{cuda_solve_challenge, KERNEL}; diff --git a/tig-algorithms/src/satisfiability/sat_adaptive/inbound.rs b/tig-algorithms/src/satisfiability/sat_adaptive/inbound.rs new file mode 100644 index 00000000..885501fb --- /dev/null +++ b/tig-algorithms/src/satisfiability/sat_adaptive/inbound.rs @@ -0,0 +1,315 @@ +/*! +Copyright 2024 syebastian + +Licensed under the TIG Inbound Game License v1.0 or (at your option) any later +version (the "License"); you may not use this file except in compliance with the +License. You may obtain a copy of the License at + +https://github.com/tig-foundation/tig-monorepo/tree/main/docs/licenses + +Unless required by applicable law or agreed to in writing, software distributed +under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR +CONDITIONS OF ANY KIND, either express or implied. See the License for the specific +language governing permissions and limitations under the License. +*/ + +use rand::{rngs::{SmallRng, StdRng}, Rng, SeedableRng}; +use std::collections::HashMap; +use tig_challenges::satisfiability::*; + +pub fn solve_challenge(challenge: &Challenge) -> anyhow::Result> { + let mut rng = SmallRng::seed_from_u64(u64::from_le_bytes(challenge.seed[..8].try_into().unwrap()) as u64); + + let mut p_single = vec![false; challenge.difficulty.num_variables]; + let mut n_single = vec![false; challenge.difficulty.num_variables]; + + let mut clauses_ = challenge.clauses.clone(); + let mut clauses: Vec> = Vec::with_capacity(clauses_.len()); + + let mut rounds = 0; + + let mut dead = false; + + while !(dead) { + let mut done = true; + for c in &clauses_ { + let mut c_: Vec = Vec::with_capacity(c.len()); // Preallocate with capacity + let mut skip = false; + for (i, l) in c.iter().enumerate() { + if (p_single[(l.abs() - 1) as usize] && *l > 0) + || (n_single[(l.abs() - 1) as usize] && *l < 0) + || c[(i + 1)..].contains(&-l) + { + skip = true; + break; + } else if p_single[(l.abs() - 1) as usize] + || n_single[(l.abs() - 1) as usize] + || c[(i + 1)..].contains(&l) + { + done = false; + continue; + } else { + c_.push(*l); + } + } + if skip { + done = false; + continue; + }; + match c_[..] { + [l] => { + done = false; + if l > 0 { + if n_single[(l.abs() - 1) as usize] { + dead = true; + break; + } else { + p_single[(l.abs() - 1) as usize] = true; + } + } else { + if p_single[(l.abs() - 1) as usize] { + dead = true; + break; + } else { + n_single[(l.abs() - 1) as usize] = true; + } + } + } + [] => { + dead = true; + break; + } + _ => { + clauses.push(c_); + } + } + } + if done { + break; + } else { + clauses_ = clauses; + clauses = Vec::with_capacity(clauses_.len()); + } + } + + if dead { + return Ok(None); + } + + let num_variables = challenge.difficulty.num_variables; + let num_clauses = clauses.len(); + + let mut p_clauses: Vec> = vec![Vec::new(); num_variables]; + let mut n_clauses: Vec> = vec![Vec::new(); num_variables]; + + // Preallocate capacity for p_clauses and n_clauses + for c in &clauses { + for &l in c { + let var = (l.abs() - 1) as usize; + if l > 0 { + if p_clauses[var].capacity() == 0 { + p_clauses[var] = Vec::with_capacity(clauses.len() / num_variables + 1); + } + } else { + if n_clauses[var].capacity() == 0 { + n_clauses[var] = Vec::with_capacity(clauses.len() / num_variables + 1); + } + } + } + } + + for (i, &ref c) in clauses.iter().enumerate() { + for &l in c { + let var = (l.abs() - 1) as usize; + if l > 0 { + p_clauses[var].push(i); + } else { + n_clauses[var].push(i); + } + } + } + + let mut variables = vec![false; num_variables]; + for v in 0..num_variables { + let num_p = p_clauses[v].len(); + let num_n = n_clauses[v].len(); + + let nad = 1.28; + let mut vad = nad + 1.0; + if num_n > 0 { + vad = num_p as f32 / num_n as f32; + } + + if vad <= nad { + variables[v] = false; + } else { + let prob = num_p as f64 / (num_p + num_n).max(1) as f64; + variables[v] = rng.gen_bool(prob) + } + } + + let mut num_good_so_far: Vec = vec![0; num_clauses]; + for (i, &ref c) in clauses.iter().enumerate() { + for &l in c { + let var = (l.abs() - 1) as usize; + if l > 0 && variables[var] { + num_good_so_far[i] += 1 + } else if l < 0 && !variables[var] { + num_good_so_far[i] += 1 + } + } + } + + + let mut residual_ = Vec::with_capacity(num_clauses); + let mut residual_indices = vec![None; num_clauses]; + + for (i, &num_good) in num_good_so_far.iter().enumerate() { + if num_good == 0 { + residual_.push(i); + residual_indices[i] = Some(residual_.len() - 1); + } + } + + let base_prob = 0.52; + let mut current_prob = base_prob; + let check_interval = 50; + let mut last_check_residual = residual_.len(); + + let clauses_ratio = challenge.difficulty.clauses_to_variables_percent as f64; + let num_vars = challenge.difficulty.num_variables as f64; + let max_fuel = 2000000000.0; + let base_fuel = (2000.0 + 40.0 * clauses_ratio) * num_vars; + let flip_fuel = 350.0 + 0.9 * clauses_ratio; + let max_num_rounds = ((max_fuel - base_fuel) / flip_fuel) as usize; + loop { + if !residual_.is_empty() { + + let rand_val = rng.gen::(); + + let i = residual_[rand_val % residual_.len()]; + let mut min_sad = clauses.len(); + let mut v_min_sad = usize::MAX; + let c = &mut clauses[i]; + + if c.len() > 1 { + let random_index = rand_val % c.len(); + c.swap(0, random_index); + } + for &l in c.iter() { + let abs_l = l.abs() as usize - 1; + let clauses_to_check = if variables[abs_l] { &p_clauses[abs_l] } else { &n_clauses[abs_l] }; + + let mut sad = 0; + for &c in clauses_to_check { + if num_good_so_far[c] == 1 { + sad += 1; + } + } + + if sad < min_sad { + min_sad = sad; + v_min_sad = abs_l; + } + } + + if rounds % check_interval == 0 { + let progress = last_check_residual as i64 - residual_.len() as i64; + let progress_ratio = progress as f64 / last_check_residual as f64; + + let progress_threshold = 0.2 + 0.1 * f64::min(1.0, (clauses_ratio - 410.0) / 15.0); + + if progress <= 0 { + let prob_adjustment = 0.025 * (-progress as f64 / last_check_residual as f64).min(1.0); + current_prob = (current_prob + prob_adjustment).min(0.9); + } else if progress_ratio > progress_threshold { + current_prob = base_prob; + } else { + current_prob = current_prob * 0.8 + base_prob * 0.2; + } + + last_check_residual = residual_.len(); + } + + let v = if min_sad == 0 { + v_min_sad + } else if rng.gen_bool(current_prob) { + c[0].abs() as usize - 1 + } else { + v_min_sad + }; + + if variables[v] { + for &c in &n_clauses[v] { + num_good_so_far[c] += 1; + if num_good_so_far[c] == 1 { + let i = residual_indices[c].take().unwrap(); + let last = residual_.pop().unwrap(); + if i < residual_.len() { + residual_[i] = last; + residual_indices[last] = Some(i); + } + } + } + for &c in &p_clauses[v] { + if num_good_so_far[c] == 1 { + residual_.push(c); + residual_indices[c] = Some(residual_.len() - 1); + } + num_good_so_far[c] -= 1; + } + } else { + for &c in &n_clauses[v] { + if num_good_so_far[c] == 1 { + residual_.push(c); + residual_indices[c] = Some(residual_.len() - 1); + } + num_good_so_far[c] -= 1; + } + + for &c in &p_clauses[v] { + num_good_so_far[c] += 1; + if num_good_so_far[c] == 1 { + let i = residual_indices[c].take().unwrap(); + let last = residual_.pop().unwrap(); + if i < residual_.len() { + residual_[i] = last; + residual_indices[last] = Some(i); + } + } + } + } + + variables[v] = !variables[v]; + } else { + break; + } + rounds += 1; + if rounds >= max_num_rounds { + return Ok(None); + } + } + return Ok(Some(Solution { variables })); +} + +#[cfg(feature = "cuda")] +mod gpu_optimisation { + use super::*; + use cudarc::driver::*; + use std::{collections::HashMap, sync::Arc}; + use tig_challenges::CudaKernel; + + // set KERNEL to None if algorithm only has a CPU implementation + pub const KERNEL: Option = None; + + // Important! your GPU and CPU version of the algorithm should return the same result + pub fn cuda_solve_challenge( + challenge: &Challenge, + dev: &Arc, + mut funcs: HashMap<&'static str, CudaFunction>, + ) -> anyhow::Result> { + solve_challenge(challenge) + } +} +#[cfg(feature = "cuda")] +pub use gpu_optimisation::{cuda_solve_challenge, KERNEL}; diff --git a/tig-algorithms/src/satisfiability/sat_adaptive/innovator_outbound.rs b/tig-algorithms/src/satisfiability/sat_adaptive/innovator_outbound.rs new file mode 100644 index 00000000..38b12c6a --- /dev/null +++ b/tig-algorithms/src/satisfiability/sat_adaptive/innovator_outbound.rs @@ -0,0 +1,315 @@ +/*! +Copyright 2024 syebastian + +Licensed under the TIG Innovator Outbound Game License v1.0 (the "License"); you +may not use this file except in compliance with the License. You may obtain a copy +of the License at + +https://github.com/tig-foundation/tig-monorepo/tree/main/docs/licenses + +Unless required by applicable law or agreed to in writing, software distributed +under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR +CONDITIONS OF ANY KIND, either express or implied. See the License for the specific +language governing permissions and limitations under the License. +*/ + +use rand::{rngs::{SmallRng, StdRng}, Rng, SeedableRng}; +use std::collections::HashMap; +use tig_challenges::satisfiability::*; + +pub fn solve_challenge(challenge: &Challenge) -> anyhow::Result> { + let mut rng = SmallRng::seed_from_u64(u64::from_le_bytes(challenge.seed[..8].try_into().unwrap()) as u64); + + let mut p_single = vec![false; challenge.difficulty.num_variables]; + let mut n_single = vec![false; challenge.difficulty.num_variables]; + + let mut clauses_ = challenge.clauses.clone(); + let mut clauses: Vec> = Vec::with_capacity(clauses_.len()); + + let mut rounds = 0; + + let mut dead = false; + + while !(dead) { + let mut done = true; + for c in &clauses_ { + let mut c_: Vec = Vec::with_capacity(c.len()); // Preallocate with capacity + let mut skip = false; + for (i, l) in c.iter().enumerate() { + if (p_single[(l.abs() - 1) as usize] && *l > 0) + || (n_single[(l.abs() - 1) as usize] && *l < 0) + || c[(i + 1)..].contains(&-l) + { + skip = true; + break; + } else if p_single[(l.abs() - 1) as usize] + || n_single[(l.abs() - 1) as usize] + || c[(i + 1)..].contains(&l) + { + done = false; + continue; + } else { + c_.push(*l); + } + } + if skip { + done = false; + continue; + }; + match c_[..] { + [l] => { + done = false; + if l > 0 { + if n_single[(l.abs() - 1) as usize] { + dead = true; + break; + } else { + p_single[(l.abs() - 1) as usize] = true; + } + } else { + if p_single[(l.abs() - 1) as usize] { + dead = true; + break; + } else { + n_single[(l.abs() - 1) as usize] = true; + } + } + } + [] => { + dead = true; + break; + } + _ => { + clauses.push(c_); + } + } + } + if done { + break; + } else { + clauses_ = clauses; + clauses = Vec::with_capacity(clauses_.len()); + } + } + + if dead { + return Ok(None); + } + + let num_variables = challenge.difficulty.num_variables; + let num_clauses = clauses.len(); + + let mut p_clauses: Vec> = vec![Vec::new(); num_variables]; + let mut n_clauses: Vec> = vec![Vec::new(); num_variables]; + + // Preallocate capacity for p_clauses and n_clauses + for c in &clauses { + for &l in c { + let var = (l.abs() - 1) as usize; + if l > 0 { + if p_clauses[var].capacity() == 0 { + p_clauses[var] = Vec::with_capacity(clauses.len() / num_variables + 1); + } + } else { + if n_clauses[var].capacity() == 0 { + n_clauses[var] = Vec::with_capacity(clauses.len() / num_variables + 1); + } + } + } + } + + for (i, &ref c) in clauses.iter().enumerate() { + for &l in c { + let var = (l.abs() - 1) as usize; + if l > 0 { + p_clauses[var].push(i); + } else { + n_clauses[var].push(i); + } + } + } + + let mut variables = vec![false; num_variables]; + for v in 0..num_variables { + let num_p = p_clauses[v].len(); + let num_n = n_clauses[v].len(); + + let nad = 1.28; + let mut vad = nad + 1.0; + if num_n > 0 { + vad = num_p as f32 / num_n as f32; + } + + if vad <= nad { + variables[v] = false; + } else { + let prob = num_p as f64 / (num_p + num_n).max(1) as f64; + variables[v] = rng.gen_bool(prob) + } + } + + let mut num_good_so_far: Vec = vec![0; num_clauses]; + for (i, &ref c) in clauses.iter().enumerate() { + for &l in c { + let var = (l.abs() - 1) as usize; + if l > 0 && variables[var] { + num_good_so_far[i] += 1 + } else if l < 0 && !variables[var] { + num_good_so_far[i] += 1 + } + } + } + + + let mut residual_ = Vec::with_capacity(num_clauses); + let mut residual_indices = vec![None; num_clauses]; + + for (i, &num_good) in num_good_so_far.iter().enumerate() { + if num_good == 0 { + residual_.push(i); + residual_indices[i] = Some(residual_.len() - 1); + } + } + + let base_prob = 0.52; + let mut current_prob = base_prob; + let check_interval = 50; + let mut last_check_residual = residual_.len(); + + let clauses_ratio = challenge.difficulty.clauses_to_variables_percent as f64; + let num_vars = challenge.difficulty.num_variables as f64; + let max_fuel = 2000000000.0; + let base_fuel = (2000.0 + 40.0 * clauses_ratio) * num_vars; + let flip_fuel = 350.0 + 0.9 * clauses_ratio; + let max_num_rounds = ((max_fuel - base_fuel) / flip_fuel) as usize; + loop { + if !residual_.is_empty() { + + let rand_val = rng.gen::(); + + let i = residual_[rand_val % residual_.len()]; + let mut min_sad = clauses.len(); + let mut v_min_sad = usize::MAX; + let c = &mut clauses[i]; + + if c.len() > 1 { + let random_index = rand_val % c.len(); + c.swap(0, random_index); + } + for &l in c.iter() { + let abs_l = l.abs() as usize - 1; + let clauses_to_check = if variables[abs_l] { &p_clauses[abs_l] } else { &n_clauses[abs_l] }; + + let mut sad = 0; + for &c in clauses_to_check { + if num_good_so_far[c] == 1 { + sad += 1; + } + } + + if sad < min_sad { + min_sad = sad; + v_min_sad = abs_l; + } + } + + if rounds % check_interval == 0 { + let progress = last_check_residual as i64 - residual_.len() as i64; + let progress_ratio = progress as f64 / last_check_residual as f64; + + let progress_threshold = 0.2 + 0.1 * f64::min(1.0, (clauses_ratio - 410.0) / 15.0); + + if progress <= 0 { + let prob_adjustment = 0.025 * (-progress as f64 / last_check_residual as f64).min(1.0); + current_prob = (current_prob + prob_adjustment).min(0.9); + } else if progress_ratio > progress_threshold { + current_prob = base_prob; + } else { + current_prob = current_prob * 0.8 + base_prob * 0.2; + } + + last_check_residual = residual_.len(); + } + + let v = if min_sad == 0 { + v_min_sad + } else if rng.gen_bool(current_prob) { + c[0].abs() as usize - 1 + } else { + v_min_sad + }; + + if variables[v] { + for &c in &n_clauses[v] { + num_good_so_far[c] += 1; + if num_good_so_far[c] == 1 { + let i = residual_indices[c].take().unwrap(); + let last = residual_.pop().unwrap(); + if i < residual_.len() { + residual_[i] = last; + residual_indices[last] = Some(i); + } + } + } + for &c in &p_clauses[v] { + if num_good_so_far[c] == 1 { + residual_.push(c); + residual_indices[c] = Some(residual_.len() - 1); + } + num_good_so_far[c] -= 1; + } + } else { + for &c in &n_clauses[v] { + if num_good_so_far[c] == 1 { + residual_.push(c); + residual_indices[c] = Some(residual_.len() - 1); + } + num_good_so_far[c] -= 1; + } + + for &c in &p_clauses[v] { + num_good_so_far[c] += 1; + if num_good_so_far[c] == 1 { + let i = residual_indices[c].take().unwrap(); + let last = residual_.pop().unwrap(); + if i < residual_.len() { + residual_[i] = last; + residual_indices[last] = Some(i); + } + } + } + } + + variables[v] = !variables[v]; + } else { + break; + } + rounds += 1; + if rounds >= max_num_rounds { + return Ok(None); + } + } + return Ok(Some(Solution { variables })); +} + +#[cfg(feature = "cuda")] +mod gpu_optimisation { + use super::*; + use cudarc::driver::*; + use std::{collections::HashMap, sync::Arc}; + use tig_challenges::CudaKernel; + + // set KERNEL to None if algorithm only has a CPU implementation + pub const KERNEL: Option = None; + + // Important! your GPU and CPU version of the algorithm should return the same result + pub fn cuda_solve_challenge( + challenge: &Challenge, + dev: &Arc, + mut funcs: HashMap<&'static str, CudaFunction>, + ) -> anyhow::Result> { + solve_challenge(challenge) + } +} +#[cfg(feature = "cuda")] +pub use gpu_optimisation::{cuda_solve_challenge, KERNEL}; diff --git a/tig-algorithms/src/satisfiability/sat_adaptive/mod.rs b/tig-algorithms/src/satisfiability/sat_adaptive/mod.rs new file mode 100644 index 00000000..fcec9672 --- /dev/null +++ b/tig-algorithms/src/satisfiability/sat_adaptive/mod.rs @@ -0,0 +1,4 @@ +mod benchmarker_outbound; +pub use benchmarker_outbound::solve_challenge; +#[cfg(feature = "cuda")] +pub use benchmarker_outbound::{cuda_solve_challenge, KERNEL}; \ No newline at end of file diff --git a/tig-algorithms/src/satisfiability/sat_adaptive/open_data.rs b/tig-algorithms/src/satisfiability/sat_adaptive/open_data.rs new file mode 100644 index 00000000..4a4711b4 --- /dev/null +++ b/tig-algorithms/src/satisfiability/sat_adaptive/open_data.rs @@ -0,0 +1,315 @@ +/*! +Copyright 2024 syebastian + +Licensed under the TIG Open Data License v1.0 or (at your option) any later version +(the "License"); you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +https://github.com/tig-foundation/tig-monorepo/tree/main/docs/licenses + +Unless required by applicable law or agreed to in writing, software distributed +under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR +CONDITIONS OF ANY KIND, either express or implied. See the License for the specific +language governing permissions and limitations under the License. +*/ + +use rand::{rngs::{SmallRng, StdRng}, Rng, SeedableRng}; +use std::collections::HashMap; +use tig_challenges::satisfiability::*; + +pub fn solve_challenge(challenge: &Challenge) -> anyhow::Result> { + let mut rng = SmallRng::seed_from_u64(u64::from_le_bytes(challenge.seed[..8].try_into().unwrap()) as u64); + + let mut p_single = vec![false; challenge.difficulty.num_variables]; + let mut n_single = vec![false; challenge.difficulty.num_variables]; + + let mut clauses_ = challenge.clauses.clone(); + let mut clauses: Vec> = Vec::with_capacity(clauses_.len()); + + let mut rounds = 0; + + let mut dead = false; + + while !(dead) { + let mut done = true; + for c in &clauses_ { + let mut c_: Vec = Vec::with_capacity(c.len()); // Preallocate with capacity + let mut skip = false; + for (i, l) in c.iter().enumerate() { + if (p_single[(l.abs() - 1) as usize] && *l > 0) + || (n_single[(l.abs() - 1) as usize] && *l < 0) + || c[(i + 1)..].contains(&-l) + { + skip = true; + break; + } else if p_single[(l.abs() - 1) as usize] + || n_single[(l.abs() - 1) as usize] + || c[(i + 1)..].contains(&l) + { + done = false; + continue; + } else { + c_.push(*l); + } + } + if skip { + done = false; + continue; + }; + match c_[..] { + [l] => { + done = false; + if l > 0 { + if n_single[(l.abs() - 1) as usize] { + dead = true; + break; + } else { + p_single[(l.abs() - 1) as usize] = true; + } + } else { + if p_single[(l.abs() - 1) as usize] { + dead = true; + break; + } else { + n_single[(l.abs() - 1) as usize] = true; + } + } + } + [] => { + dead = true; + break; + } + _ => { + clauses.push(c_); + } + } + } + if done { + break; + } else { + clauses_ = clauses; + clauses = Vec::with_capacity(clauses_.len()); + } + } + + if dead { + return Ok(None); + } + + let num_variables = challenge.difficulty.num_variables; + let num_clauses = clauses.len(); + + let mut p_clauses: Vec> = vec![Vec::new(); num_variables]; + let mut n_clauses: Vec> = vec![Vec::new(); num_variables]; + + // Preallocate capacity for p_clauses and n_clauses + for c in &clauses { + for &l in c { + let var = (l.abs() - 1) as usize; + if l > 0 { + if p_clauses[var].capacity() == 0 { + p_clauses[var] = Vec::with_capacity(clauses.len() / num_variables + 1); + } + } else { + if n_clauses[var].capacity() == 0 { + n_clauses[var] = Vec::with_capacity(clauses.len() / num_variables + 1); + } + } + } + } + + for (i, &ref c) in clauses.iter().enumerate() { + for &l in c { + let var = (l.abs() - 1) as usize; + if l > 0 { + p_clauses[var].push(i); + } else { + n_clauses[var].push(i); + } + } + } + + let mut variables = vec![false; num_variables]; + for v in 0..num_variables { + let num_p = p_clauses[v].len(); + let num_n = n_clauses[v].len(); + + let nad = 1.28; + let mut vad = nad + 1.0; + if num_n > 0 { + vad = num_p as f32 / num_n as f32; + } + + if vad <= nad { + variables[v] = false; + } else { + let prob = num_p as f64 / (num_p + num_n).max(1) as f64; + variables[v] = rng.gen_bool(prob) + } + } + + let mut num_good_so_far: Vec = vec![0; num_clauses]; + for (i, &ref c) in clauses.iter().enumerate() { + for &l in c { + let var = (l.abs() - 1) as usize; + if l > 0 && variables[var] { + num_good_so_far[i] += 1 + } else if l < 0 && !variables[var] { + num_good_so_far[i] += 1 + } + } + } + + + let mut residual_ = Vec::with_capacity(num_clauses); + let mut residual_indices = vec![None; num_clauses]; + + for (i, &num_good) in num_good_so_far.iter().enumerate() { + if num_good == 0 { + residual_.push(i); + residual_indices[i] = Some(residual_.len() - 1); + } + } + + let base_prob = 0.52; + let mut current_prob = base_prob; + let check_interval = 50; + let mut last_check_residual = residual_.len(); + + let clauses_ratio = challenge.difficulty.clauses_to_variables_percent as f64; + let num_vars = challenge.difficulty.num_variables as f64; + let max_fuel = 2000000000.0; + let base_fuel = (2000.0 + 40.0 * clauses_ratio) * num_vars; + let flip_fuel = 350.0 + 0.9 * clauses_ratio; + let max_num_rounds = ((max_fuel - base_fuel) / flip_fuel) as usize; + loop { + if !residual_.is_empty() { + + let rand_val = rng.gen::(); + + let i = residual_[rand_val % residual_.len()]; + let mut min_sad = clauses.len(); + let mut v_min_sad = usize::MAX; + let c = &mut clauses[i]; + + if c.len() > 1 { + let random_index = rand_val % c.len(); + c.swap(0, random_index); + } + for &l in c.iter() { + let abs_l = l.abs() as usize - 1; + let clauses_to_check = if variables[abs_l] { &p_clauses[abs_l] } else { &n_clauses[abs_l] }; + + let mut sad = 0; + for &c in clauses_to_check { + if num_good_so_far[c] == 1 { + sad += 1; + } + } + + if sad < min_sad { + min_sad = sad; + v_min_sad = abs_l; + } + } + + if rounds % check_interval == 0 { + let progress = last_check_residual as i64 - residual_.len() as i64; + let progress_ratio = progress as f64 / last_check_residual as f64; + + let progress_threshold = 0.2 + 0.1 * f64::min(1.0, (clauses_ratio - 410.0) / 15.0); + + if progress <= 0 { + let prob_adjustment = 0.025 * (-progress as f64 / last_check_residual as f64).min(1.0); + current_prob = (current_prob + prob_adjustment).min(0.9); + } else if progress_ratio > progress_threshold { + current_prob = base_prob; + } else { + current_prob = current_prob * 0.8 + base_prob * 0.2; + } + + last_check_residual = residual_.len(); + } + + let v = if min_sad == 0 { + v_min_sad + } else if rng.gen_bool(current_prob) { + c[0].abs() as usize - 1 + } else { + v_min_sad + }; + + if variables[v] { + for &c in &n_clauses[v] { + num_good_so_far[c] += 1; + if num_good_so_far[c] == 1 { + let i = residual_indices[c].take().unwrap(); + let last = residual_.pop().unwrap(); + if i < residual_.len() { + residual_[i] = last; + residual_indices[last] = Some(i); + } + } + } + for &c in &p_clauses[v] { + if num_good_so_far[c] == 1 { + residual_.push(c); + residual_indices[c] = Some(residual_.len() - 1); + } + num_good_so_far[c] -= 1; + } + } else { + for &c in &n_clauses[v] { + if num_good_so_far[c] == 1 { + residual_.push(c); + residual_indices[c] = Some(residual_.len() - 1); + } + num_good_so_far[c] -= 1; + } + + for &c in &p_clauses[v] { + num_good_so_far[c] += 1; + if num_good_so_far[c] == 1 { + let i = residual_indices[c].take().unwrap(); + let last = residual_.pop().unwrap(); + if i < residual_.len() { + residual_[i] = last; + residual_indices[last] = Some(i); + } + } + } + } + + variables[v] = !variables[v]; + } else { + break; + } + rounds += 1; + if rounds >= max_num_rounds { + return Ok(None); + } + } + return Ok(Some(Solution { variables })); +} + +#[cfg(feature = "cuda")] +mod gpu_optimisation { + use super::*; + use cudarc::driver::*; + use std::{collections::HashMap, sync::Arc}; + use tig_challenges::CudaKernel; + + // set KERNEL to None if algorithm only has a CPU implementation + pub const KERNEL: Option = None; + + // Important! your GPU and CPU version of the algorithm should return the same result + pub fn cuda_solve_challenge( + challenge: &Challenge, + dev: &Arc, + mut funcs: HashMap<&'static str, CudaFunction>, + ) -> anyhow::Result> { + solve_challenge(challenge) + } +} +#[cfg(feature = "cuda")] +pub use gpu_optimisation::{cuda_solve_challenge, KERNEL}; diff --git a/tig-algorithms/src/satisfiability/template.rs b/tig-algorithms/src/satisfiability/template.rs index c2d71530..f11c4cd6 100644 --- a/tig-algorithms/src/satisfiability/template.rs +++ b/tig-algorithms/src/satisfiability/template.rs @@ -1,11 +1,7 @@ /*! -Copyright [year copyright work created] [name of copyright owner] +Copyright [yyyy] [name of copyright owner] -Identity of Submitter [name of person or entity that submits the Work to TIG] - -UAI [UAI (if applicable)] - -Licensed under the TIG Inbound Game License v2.0 or (at your option) any later +Licensed under the TIG Inbound Game License v1.0 or (at your option) any later version (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at @@ -17,24 +13,6 @@ CONDITIONS OF ANY KIND, either express or implied. See the License for the speci language governing permissions and limitations under the License. */ -// REMOVE BELOW SECTION IF UNUSED -/* -REFERENCES AND ACKNOWLEDGMENTS - -This implementation is based on or inspired by existing work. Citations and -acknowledgments below: - -1. Academic Papers: - - [Author(s), "Paper Title", DOI (if available)] - -2. Code References: - - [Author(s), URL] - -3. Other: - - [Author(s), Details] - -*/ - // TIG's UI uses the pattern `tig_challenges::` to automatically detect your algorithm's challenge use anyhow::{anyhow, Result}; use tig_challenges::satisfiability::{Challenge, Solution}; diff --git a/tig-algorithms/wasm/satisfiability/sat_adaptive.wasm b/tig-algorithms/wasm/satisfiability/sat_adaptive.wasm new file mode 100644 index 00000000..98eae0e0 Binary files /dev/null and b/tig-algorithms/wasm/satisfiability/sat_adaptive.wasm differ