-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
120 lines (105 loc) · 3.53 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
class BasicBlock(nn.Module):
"""
-> Conv -> PReLU ->
"""
def __init__(self, ins, outs):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(ins, outs, (3,3), (1,1), padding=1) # different weight
self.relu1 = nn.PReLU()
def forward(self, x):
out = self.conv1(x)
out = self.relu1(out)
return out
class ResBlock(nn.Module):
"""
-> -> Conv -> PReLU -> Conv -> PReLU -> ADD ->
| |
+-------------------------------------+
"""
def __init__(self, ins, outs):
super(ResBlock, self).__init__()
self.basic1 = BasicBlock(ins,ins)
self.basic2 = BasicBlock(ins, ins)
def forward(self, x):
residual = x
out = self.basic1(x)
out = self.basic2(out)
out += residual
return out
class DenseBlock(nn.Module):
"""
-> Conv -> PReLU -> [-> Conv -> PReLU -> CAT ->]*6 ->
| |
+--------------------+
"""
def __init__(self, ins):
super(DenseBlock, self).__init__()
self.basic1 = BasicBlock(ins, 64)
self.basic2 = BasicBlock(64, 32)
self.basic3 = BasicBlock(96, 32)
self.basic4 = BasicBlock(128, 32)
self.basic5 = BasicBlock(160, 32)
self.basic6 = BasicBlock(192, 32)
self.basic7 = BasicBlock(224, 32)
def forward(self, x):
x = self.basic1(x)
y1 = self.basic2(x)
y1 = torch.cat((x, y1), 1)
x = self.basic3(y1)
y1 = torch.cat((x, y1), 1)
x = self.basic4(y1)
y1 = torch.cat((x, y1), 1)
x = self.basic5(y1)
y1 = torch.cat((x, y1), 1)
x = self.basic6(y1)
y1 = torch.cat((x, y1), 1)
x = self.basic7(y1)
y1 = torch.cat((x, y1), 1)
return y1
class CNNHNet(nn.Module):
"""
Hallucination network. convert LR images to an SR images
"""
def __init__(self, upscale_factor, batch_size):
super(CNNHNet, self).__init__()
self.batchsize = batch_size
self.dense1 = DenseBlock(3)
self.deconv1 = nn.ConvTranspose2d(256, 256, (3,3), (2,2), output_padding=1, padding=1)
self.relude1 = nn.PReLU()
self.dense2 = DenseBlock(256)
self.deconv2 = nn.ConvTranspose2d(256, 256, (5,5), (2,2), output_padding=1, padding=2)
self.relude2 = nn.PReLU()
#self.dense3 = DenseBlock(256)
#self.deconv3 = nn.ConvTranspose2d(256, 256, (3,3), (1,1), output_padding=0, padding=1)
#self.relude3 = nn.PReLU()
self.prebasic4_1 = BasicBlock(256, 64)
self.prebasic4_2 = BasicBlock(64, 32)
self.prebasic4_3 = BasicBlock(96, 32)
self.gen = nn.Conv2d(128, 3, (5,5), (1,1), padding=2)
self.tanh = nn.Tanh()
def forward(self, input):
"""
Args:
input: LR images
Returns:
output: SR images
"""
y1 = self.dense1(input)
x = self.relude1(self.deconv1(y1))
y1 = self.dense2(x)
x = self.relude2(self.deconv2(y1))
#y1 = self.dense3(x)
#x = self.relude3(self.deconv3(y1))
x = self.prebasic4_1(x)
y1 = self.prebasic4_2(x)
y1 = torch.cat((x, y1), 1)
x = self.prebasic4_3(y1)
x = torch.cat((x, y1), 1)
output = self.tanh(self.gen(x))
return output
def _initialize_weights(self):
return null