-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathplotter.py
224 lines (198 loc) · 8.64 KB
/
plotter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
from pathlib import Path
from fire import Fire
import pandas as pd
from tqdm import tqdm
import numpy as np
from datetime import datetime
import matplotlib.pyplot as plt
from send2trash import send2trash
# SETTINGS ###################################################################
##############################################################################
def plot(show_or_saveimg="both",
local_dir="./remote_files/logs/sleep/",
open_console=False,
n_last=3,
):
"""
simple script to import the sleep data into pandas and create plots
Parameters
----------
show_or_saveimg: str, default "both"
must be in "show", "saveimg" or "both". Determines wether the data will be
saved as png or shown to the user.
local_dir: str, default "./remote_files/logs/sleep"
path to the dir containing the csv files.
open_console: bool, default False
if True, opens a console at the end of the run
n_last: int, default 3
number of files to actually process. For example '3' will mean 'ignore
all files but the recordings of the last 3 nights'. This is useful if
you have lots of recordings and want to see only the last few nights.
None to disable.
"""
if isinstance(local_dir, str):
local_dir = Path(local_dir)
# check arguments
assert local_dir.exists(), "Remote directory does not exist"
assert show_or_saveimg in ["show", "saveimg", "both"], "Wrong 'show_or_saveimg' value"
# load files
files = sorted([f for f in local_dir.iterdir() if str(f).endswith(".csv")])
if n_last is not None:
assert n_last > 0, "Wrong n_last value"
files = files[-n_last:]
print(f"Processing only {n_last} most recent recordings.")
assert len(files) > 0, "No files found."
print(f"{len(files)} files found.\r")
recordings = {} # where the df will be stored
for file in tqdm(files, desc="Loading files"):
# load file
df = pd.read_csv(file)
# ignore small files
if len(df.index.tolist()) == 0:
tqdm.write(f" No data in df '{file}'. Ignoring this file.")
continue
elif len(df.index.tolist()) <= 5:
tqdm.write(f" Not enough data ({len(df.index.tolist())} elems) in df '{file}'. Trashing this file.")
try:
send2trash(file)
except Exception as err:
tqdm.write(f"Exception when trashing '{file}': '{err}'")
continue
# detect version number and saving interval
assert file.name.count("_") >= 2, "invalid filename"
version = int(file.name.split("_")[2].replace(".csv", ""))
interval = int(file.name.split("_")[1])
# fill elipsed timestamp value
df.iloc[0]["Timestamp"] = 1
for i, row in df.iterrows():
if i == 0:
continue
if pd.isna(df.loc[i, "Timestamp"]):
assert not pd.isna(df.loc[i - 1, "Timestamp"]), "ERROR"
df.loc[i, "Timestamp"] = (df.loc[i - 1, "Timestamp"] + 1)
df["Timestamp"] *= interval
df["Timestamp"] = df["Timestamp"].astype(int)
# time data correction and loading
offset = int(str(file).split("/")[-1].split("_")[0])
df["UNIX_time"] = df["Timestamp"] + int(offset)
df["date"] = [datetime.utcfromtimestamp(unix)
for unix in df["UNIX_time"].tolist()]
df["clock"] = pd.to_datetime(df["date"]).dt.time
df["clock"] = df["clock"].astype(str)
recording_date = str(datetime.utcfromtimestamp(offset))
# cast types and fill ellipsed values
df.loc[df["Meta"].isna(), "Meta"] = 0
df.loc[df["BPM"].isna(), "BPM"] = "?"
df["Meta"] = df["Meta"].astype(int)
# process motion signal
df["Motion"] /= 1000
df["Motion"] = df["Motion"].diff().abs()
# replace first value that got erased by abs()
df["Motion"].fillna(0.0, inplace=True)
# clip values that are too high
df["Motion"].clip(lower=0, upper=df["Motion"].quantile(0.95), inplace=True)
# compute smoothing etc if desired
#df["Motion"] = df["Motion"].rolling(window=4, center=True, closed='both').max()
# store df
recordings[recording_date] = df
# plot data and save to file
try:
# init plot
fig, ax = plt.subplots()
ax.set_xlabel("Time")
ax.set_title(f"{recording_date} ({file.name})")
# plot bpm data if present
bpm_vals = df.loc[ df["BPM"].dropna() != "?"].index.tolist()
if len(bpm_vals) >= 2:
df.loc[bpm_vals, "BPM"] = df.loc[bpm_vals, "BPM"].astype(int)
#df.loc[bpm_vals, "BPM"] = df.loc[bpm_vals, "BPM"].rolling(window=10, center=True, closed='both').mean().rolling(window=3, center=True, closed='both').mean()
ax_bpm = ax.twinx()
ax_bpm.set_ylabel("BPM")
max_bpm = int(df.loc[bpm_vals, "BPM"].dropna().values.max())
min_bpm = int(df.loc[bpm_vals, "BPM"].dropna().values.min())
print(f"BPM range: {min_bpm}-{max_bpm}")
ax_bpm.plot(df.loc[bpm_vals, "Timestamp"],
df.loc[bpm_vals, "BPM"],
color="red",
linewidth=0.5,
label="BPM")
# plot motion
ax.plot(df["Timestamp"],
df["Motion"],
color="purple",
linewidth=1,
label="Motion")
# add hour time as xlabels only every 4 recording
ax.set_xticks(ticks=df["Timestamp"])
partial_clock = df["clock"].tolist()
for i, pc in enumerate(partial_clock):
if i % 4 != 0:
partial_clock[i] = ""
ax.set_xticklabels(partial_clock, rotation=90)
# add vertical lines depending on state
ymin = df["Motion"].min()
ymax = df["Motion"].max()
assert ymin != ymax # if equal, they are probably both np.nan
touched_ind = []
gradual_vib = []
both = []
for ind in df.index:
if df.loc[ind, "Meta"] == 0:
continue
if df.loc[ind, "Meta"] == 1:
touched_ind.append(ind)
elif df.loc[ind, "Meta"] == 2:
gradual_vib.append(ind)
elif df.loc[ind, "Meta"] == 3:
both.append(ind)
else:
raise ValueError()
if len(touched_ind) > 0:
ax.vlines(x=df.loc[touched_ind, "Timestamp"],
ymin=ymin,
ymax=ymax,
color="green",
linestyle="dotted",
linewidth=2.5,
label="Touched")
if len(gradual_vib) > 0:
ax.vlines(x=df.loc[gradual_vib, "Timestamp"],
ymin=ymin,
ymax=ymax,
color="blue",
linestyle="dotted",
linewidth=2.5,
label="Small vibration")
if len(both) > 0:
ax.vlines(x=df.loc[both, "Timestamp"],
ymin=ymin,
ymax=ymax,
color="black",
linestyle="dotted",
linewidth=2.5,
label="Both")
# save or show
fig.legend(fontsize=10,
prop={"size": 10},
)
if show_or_saveimg in ["saveimg", "both"]:
fig.savefig(f"{local_dir}/{offset}.png",
bbox_inches="tight",
dpi=150)
tqdm.write(f"Saved plot of '{file}' as png.")
if show_or_saveimg in ["show", "both"]:
fig.show()
except Exception as err:
tqdm.write(f"Error when plotting '{file}': '{err}'")
raise
df = recordings[list(recordings.keys())[-1]]
if open_console:
print("\rLoaded files as dataframe as values of dict 'recordings'. Opening console.")
import code
code.interact(local=locals())
else:
print("\rLoaded files as dataframe as values of dict 'recordings'.")
if show_or_saveimg in ["show", "both"]:
input("Press any key to exit.") # stops the plots from exiting
if __name__ == "__main__":
Fire(plot)