-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdisparidade.cpp
552 lines (456 loc) · 21.9 KB
/
disparidade.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
#include <opencv2/video/tracking.hpp>
#include "disparidade.h"
disparidade::disparidade(Mat& actualOne, Mat& actualTwo) : m_imageRight(actualOne), m_imageLeft(actualTwo) {
/*To save the Disparity Map in different views.*/
//videoOutDispatiryJET = cv::VideoWriter("/media/thiago/Lobinho/outDispatiryJET.avi",CV_FOURCC('M','J','P','G'), 10, Size(352,288),true);
videoOutDisparityHSV = cv::VideoWriter("outDispatiryHSV.avi",CV_FOURCC('M','J','P','G'), 10, Size(352,288),true);
videoOutDisparityBONE = cv::VideoWriter("outDispatiryHSV.avi",CV_FOURCC('M','J','P','G'), 10, Size(352,288),true);
videoOutDisparityHOT = cv::VideoWriter("outDispatiryHSV.avi",CV_FOURCC('M','J','P','G'), 10, Size(352,288),true);
videoOutOriginalOne = cv::VideoWriter("outTestDMDOne.avi",CV_FOURCC('M','J','P','G'), 10, Size(352,288),true);
videoOutOriginalTwo = cv::VideoWriter("outTestDMDTwo.avi",CV_FOURCC('M','J','P','G'), 10, Size(352,288),true);
if (!videoOutDisparityBONE.isOpened())
{
std::cout << "Could not save the video." << std::endl;
}
if (!videoOutDisparityHOT.isOpened())
{
std::cout << "Could not save the video." << std::endl;
}
if (!videoOutOriginalOne.isOpened())
{
std::cout << "Could not save the video." << std::endl;
}
if (!videoOutOriginalTwo.isOpened())
{
std::cout << "Could not save the video." << std::endl;
}
}
disparidade::~disparidade() {
m_imageRight.release();
m_imageLeft.release();
img1.release();
img2.release();
imgU1.release();
imgU2.release();
grayDisp1.release();
grayDisp2.release();
GT_disp.release();
left_for_matcher.release();
right_for_matcher.release();
left_disp.release();
right_disp.release();
filtered_disp.release();
conf_map.release();
imgCalorHSV.release();
imgCalorJET.release();
imgAdd.release();
filtered_disp_vis.release();
raw_disp_vis.release();
}
/* Loads the calibration data that is saved to a file with the
* data stored from the last calibration. It also loads the
* rectification data.
*/
void disparidade::iniciaDisparidade(){
//Mat grayDisp1, grayDisp2;
img1 = m_imageRight.clone();
img2 = m_imageLeft.clone();
cvtColor(img1, img1, CV_BGR2GRAY);
cvtColor(img2, img2, CV_BGR2GRAY);
//+++++Load calibration data from calibrated file +++++//
Mat CM1 = Mat(3, 3, CV_64FC1); //Calibration
Mat CM2 = Mat(3, 3, CV_64FC1); //Calibration
Mat D1, D2; //Calibration
Mat R, T, E, F; //Calibration
Mat R1, R2, P1, P2, Q; //Rectification
FileStorage fs("mystereocalib.yml", FileStorage::READ);
fs["CM1"] >> CM1;
fs["CM2"] >> CM2;
fs["D1"] >> D1;
fs["D2"] >> D2;
fs["R"] >> R;
fs["T"] >> T;
fs["E"] >> E;
fs["F"] >> F;
fs["R1"] >> R1;
fs["R2"] >> R2;
fs["P1"] >> P1;
fs["P2"] >> P2;
fs["Q"] >> Q;
cout << Q << endl;
fs.release();
cout << "Applying Undistort..." << endl;
Mat map1x, map1y, map2x, map2y;
initUndistortRectifyMap(CM1, D1, R1, P1, img1.size(), CV_32FC1, map1x, map1y);
initUndistortRectifyMap(CM2, D2, R2, P2, img2.size(), CV_32FC1, map2x, map2y);
cout << "Undistort completed" << endl;
//It rectifies the images by passing the parameters with the necessary information.
retificaParaDisparidade(map1x, map1y, map2x, map2y);
}
/* Receives the necessary calibration and rectification information and finalizes
* the images rectification that will be used for the Disparity Map construction.
*/
void disparidade::retificaParaDisparidade(Mat map1x, Mat map1y, Mat map2x, Mat map2y){
Mat imgRectify, imgOne, imgTwo;
int k;
char key;
while(1){
imgOne = m_imageRight.clone();
imgTwo = m_imageLeft.clone();
cvtColor(imgOne, imgOne, COLOR_BGR2RGB);
cvtColor(imgTwo, imgTwo, COLOR_BGR2RGB);
remap(imgOne, imgU1, map1x, map1y, INTER_LINEAR, BORDER_CONSTANT, Scalar());
remap(imgTwo, imgU2, map2x, map2y, INTER_LINEAR, BORDER_CONSTANT, Scalar());
/* Rectification View:
* If you want to check if the loaded rectification is correct.
*
// To display the rectified images
imgRectify = Mat::zeros(imgU1.rows, imgU1.cols*2+10, imgU1.type());
imgU1.copyTo(imgRectify(Range::all(), Range(0, imgU2.cols)));
imgU2.copyTo(imgRectify(Range::all(), Range(imgU2.cols+10, imgU2.cols*2+10)));
//If it gets too large to fit on the screen, it is scaled down, by 2, to fit.
if(imgRectify.cols > 1920){
resize(imgRectify, imgRectify, Size(imgRectify.cols/2, imgRectify.rows/2));
}
//To draw the lines in the rectified image
for(int j = 0; j < imgRectify.rows; j += 16){
Point p1 = Point(0,j);
Point p2 = Point(imgRectify.cols*2,j);
line(imgRectify, p1, p2, CV_RGB(255,0,0));
}
imshow("Rectified image", imgRectify);*/
//These are grayscale images that will be used in the DM.
Mat grayDisp1, grayDisp2;
cvtColor(imgU1, grayDisp1, CV_RGB2GRAY);
cvtColor(imgU2, grayDisp2, CV_RGB2GRAY);
imwrite("left.ppm", grayDisp1);
imwrite("right.ppm", grayDisp2);
//constroiMapaDisparidadeBM(imgU1, imgU2);
//constroiMapaDisparidadeSGBM(imgU1, imgU2);
constroiMDFiltro(grayDisp1, grayDisp2); //with grayscale images
//constroiMDFiltro(imgU1, imgU2); //with rgb images
k = waitKey(5);
key = (char) waitKey(5);
if(key==27){
break;
}
}
}
/* Here only the StereoBM, the OpenCV disparity method, is used.
* The StereoBM calculates the disparities using a matching algorithm between blocks.
* As parameters to the method are passed "numDisparities" which is the search range
* of disparities, for each pixel the algorithm must find the best disparity (from zero
* (minimum standard) to "numDisparities").
* The other parameter is "blockSize", which is linear size of the blocks compared by
* the algorithm, the size must be odd (as the block is centered on the current pizel).
* A larger block size implies a smoother but less accurate DM.
* A smaller size results in a more detailed DM, but increases the chance of the algorithm
* finding erroneous matches between pixels.
*
* Example from: https://github.com/Itseez/opencv/blob/master/samples/cpp/tutorial_code/calib3d/stereoBM/SBM_Sample.cpp
* More info: http://docs.opencv.org/3.1.0/d9/dba/classcv_1_1StereoBM.html#details&gsc.tab=0
*/
void disparidade::constroiMapaDisparidadeBM(Mat imgRight, Mat imgLeft){
//while(1){
Mat grayDisp1, grayDisp2;
cvtColor(imgRight, grayDisp1, CV_RGB2GRAY);
cvtColor(imgLeft, grayDisp2, CV_RGB2GRAY);
//imshow("image1", imgU1);
//imshow("image2", imgU2);
Mat imgDisparity16S = Mat(imgRight.rows, imgRight.cols, CV_16S);
Mat imgDisparity8U = Mat(imgRight.rows, imgRight.cols, CV_8UC1);
int ndisparities = 16*1;
int SADWindowSize = 15;
Ptr<StereoBM> sbm = StereoBM::create(ndisparities, SADWindowSize);
sbm->compute(grayDisp1, grayDisp2, imgDisparity16S);
//imwrite( "test.jpg", imgDisparity16S );
double minVal, maxVal;
minMaxLoc( imgDisparity16S, &minVal, &maxVal);
imgDisparity16S.convertTo(imgDisparity8U, CV_8UC1, 255/(maxVal - minVal));
//imgDisparity16S.convertTo(imgDisparity8U, CV_8U);
//namedWindow("windowDisparity", WINDOW_NORMAL);
imshow("windowDisparity", imgDisparity8U);
//imshow("16S", imgDisparity16S);
//key = (char) waitKey(5);
//if(key==27){
// break;
//}
//}
}
/* Here, only StereoSGBM, the OpenCV disparity method, is used.
* The StereoSGBM implements the algorithm of H. Hirschmuller (Heiko Hirschmuller,
* Stereo processing by semiglobal matching and mutual information, Pattern Analysis
* and Machine Intelligence, IEEE Transactions on, 30 (2): 328-341, 2008).
* By default the algorithm makes a single pass, you can change the way it navigates
* in the mode parameter, but this also increases memory consumption.
* The algorithm makes the correspondence between blocks, not between simple pixels,
* but you can leave the block with size equal to 1, leaving as simple pixel.
* Some pre- and pos-processing are made.
* The constructor configures all parameters by default.
* *** Parameters:
* ** minDisparity: The lowest possible value of disparity. Usually it is zero,
* but sometimes rectification algorithms can change the images, so this parameter
* needs to be adjusted accordingly.
* ** numDisparities: Maximum mismatch minus the minimum disparity. Value always
* greater than zero. Must be divisible by 16.
* ** blockSize: Match block size. must be an odd number greater than or equal to 1.
* Usually something between 3 and 11.
* ** P1: The first control parameter of the smoothness of the disparity.
* ** P2: The second control parameter of the smoothness of the disparity. The larger
* the value the smoother the disparity. P1 is the penalty for changing the disparity
* by plus or minus 1 between neighboring pixels. P2 is the penalty on the disparity
* change in more than one between neighboring pixels. P2 must be greater than P1.
* ** disp12MaxDiff: Maximum allowable difference (units of integer pixels) in checking
* for disparities between left and right images. To disable this check, simply set it
* to a non-positive value.
* ** preFilterCap: Truncation value for the pre-filtered pixels of the image.
* ** uniquenessRatio: Margin in percentage where the best (minimum) value of the
* calculated cost function must "earn" the second best value to consider in the stereo
* match found to be correct. Usually a value between 5 and 15 is good enough.
* ** speckleWindowSize: Maximum size of regions of smooth disparity to consider noise
* spots and invalidate. To disregard this filter, set to zero, otherwise leaves a range
* between 50 and 200.
* ** speckleRange: Maximum variation of disparity between related components. If you use
* the noise filter set as positive, it should be a multiple of 16. Normally 1 or 2 is
* good enough.
* ** mode: Sets how the algorithm is passed through the image (scanning). Depending on
* the option, can greatly increase memory consumption.
*
* More info: http://docs.opencv.org/3.1.0/d2/d85/classcv_1_1StereoSGBM.html#details
*/
void disparidade::constroiMapaDisparidadeSGBM(Mat imgRight, Mat imgLeft){
//while(1){
Mat grayDisp1, grayDisp2;
cvtColor(imgRight, grayDisp1, CV_RGB2GRAY);
cvtColor(imgLeft, grayDisp2, CV_RGB2GRAY);
//imshow("image1", imgU1);
//imshow("image2", imgU2);
Mat imgDisparity16S = Mat(imgRight.rows, imgRight.cols, CV_16S);
Mat imgDisparity8U = Mat(imgRight.rows, imgRight.cols, CV_8UC1);
int ndisparities = 16*1;
int SADWindowSize = 3;
Ptr<StereoSGBM> sgbm = StereoSGBM::create(0, ndisparities, SADWindowSize);
sgbm->setP1(24*SADWindowSize*SADWindowSize);
sgbm->setP2(96*SADWindowSize*SADWindowSize);
sgbm->setPreFilterCap(63);
sgbm->setMode(StereoSGBM::MODE_SGBM);
sgbm->compute(grayDisp1, grayDisp2, imgDisparity16S);
//imwrite( "test.jpg", imgDisparity16S );
double minVal, maxVal;
minMaxLoc( imgDisparity16S, &minVal, &maxVal);
imgDisparity16S.convertTo(imgDisparity8U, CV_8UC1, 255/(maxVal - minVal));
//imgDisparity16S.convertTo(imgDisparity8U, CV_32F, 1.0/16.0, 0.0);
//imgDisparity16S.convertTo(imgDisparity8U, CV_8U);
//namedWindow("windowDisparity", WINDOW_NORMAL);
imshow("windowDisparity", imgDisparity8U);
imshow("16S", imgDisparity16S);
}
/* Method that can use either StereoBM or StereoSGBM, but most important is the
* post-processing. TO do this a filter is used that smoothes the DM and refines
* some occlusions. This filter is available in the extra modules of OpenCV 3.1.
*
* Example from: http://docs.opencv.org/3.1.0/d3/d14/tutorial_ximgproc_disparity_filtering.html#gsc.tab=0
*/
void disparidade::constroiMDFiltro(Mat imgRight, Mat imgLeft){
imgDisparity8U = Mat(imgRight.rows, imgRight.cols, CV_8UC1);
filter = "wls_conf";
algo = "sgbm";
dst_path = "None";
dst_raw_path = "None";
dst_conf_path = "None";
max_disp = 5*16;
lambda = 8000.0;
sigma = 1.5;
vis_mult = 1.3;
wsize = 1; // 3 if SGBM
//wsize = 15; // if BM, 7 or 15
conf_map = Mat(imgLeft.rows,imgLeft.cols,CV_8U);
conf_map = Scalar(255);
Rect ROI;
//Better results than "wls_no_conf"
if(filter=="wls_conf"){
//if(!no_downscale){ //This is done to make it faster, but for a better result, avoid using it.
// max_disp/=2;
// if(max_disp%16!=0){
// max_disp += 16-(max_disp%16);
// }
// resize(imgLeft, left_for_matcher, Size(), 0.5, 0.5);
// resize(imgRight, right_for_matcher, Size(), 0.5, 0.5);
//}else{
left_for_matcher = imgLeft.clone();
right_for_matcher = imgRight.clone();
//}
/* The filter instance is created by providing the instance of the
* StereoMatcher Another instance is returned by createRightMatcher.
* These two instances are used to calculate the DMs for the right
* and left images, this is necessary for filtering afterwards.
*/
if(algo=="bm"){
Ptr<StereoBM> left_matcher = StereoBM::create(max_disp,wsize);
wls_filter = createDisparityWLSFilter(left_matcher);
Ptr<StereoMatcher> right_matcher = createRightMatcher(left_matcher);
//cvtColor(left_for_matcher, left_for_matcher, COLOR_BGR2GRAY);
//cvtColor(right_for_matcher, right_for_matcher, COLOR_BGR2GRAY);
//matching_time = (double)getTickCount();
left_matcher->compute(left_for_matcher, right_for_matcher, left_disp);
right_matcher->compute(right_for_matcher, left_for_matcher, right_disp);
//matching_time = ((double)getTickCount() - matching_time)/getTickFrequency();
}else if(algo=="sgbm"){
Ptr<StereoSGBM> left_matcher = StereoSGBM::create(0,max_disp,wsize);
left_matcher->setP1(8*wsize*wsize);
left_matcher->setP2(96*wsize*wsize);
left_matcher->setPreFilterCap(63);
left_matcher->setMode(StereoSGBM::MODE_HH); //MODE_SGBM_3WAY
//left_matcher->setBlockSize(1);
wls_filter = createDisparityWLSFilter(left_matcher);
Ptr<StereoMatcher> right_matcher = createRightMatcher(left_matcher);
//matching_time = (double)getTickCount();
left_matcher->compute(left_for_matcher, right_for_matcher, left_disp);
right_matcher->compute(right_for_matcher,left_for_matcher, right_disp);
//matching_time = ((double)getTickCount() - matching_time)/getTickFrequency();
}
/* Filter
* MD calculated by the respective match instances, just as the
* left image is passed to the filter.
* Note that we are using the original image to guide the filtering
* process.
*/
wls_filter->setLambda(lambda);
wls_filter->setSigmaColor(sigma);
//filtering_time = (double)getTickCount();
wls_filter->filter(left_disp, imgLeft, filtered_disp, right_disp);
//filtering_time = ((double)getTickCount() - filtering_time)/getTickFrequency();
conf_map = wls_filter->getConfidenceMap();
// Get the ROI that was used in the last filter call:
ROI = wls_filter->getROI();
if(!no_downscale)
{
// upscale raw disparity and ROI back for a proper comparison:
resize(left_disp,left_disp,Size(),2.0,2.0);
left_disp = left_disp*2.0;
ROI = Rect(ROI.x*2,ROI.y*2,ROI.width*2,ROI.height*2);
}
}
else if(filter=="wls_no_conf"){
/* There is no convenience function for the case of filtering with no confidence, so we
will need to set the ROI and matcher parameters manually */
left_for_matcher = imgLeft.clone();
right_for_matcher = imgRight.clone();
if(algo=="bm"){
Ptr<StereoBM> matcher = StereoBM::create(max_disp,wsize);
matcher->setTextureThreshold(0);
matcher->setUniquenessRatio(0);
cvtColor(left_for_matcher, left_for_matcher, COLOR_BGR2GRAY);
cvtColor(right_for_matcher, right_for_matcher, COLOR_BGR2GRAY);
ROI = computeROI(left_for_matcher.size(),matcher);
wls_filter = createDisparityWLSFilterGeneric(false);
wls_filter->setDepthDiscontinuityRadius((int)ceil(0.33*wsize));
matching_time = (double)getTickCount();
matcher->compute(left_for_matcher,right_for_matcher,left_disp);
matching_time = ((double)getTickCount() - matching_time)/getTickFrequency();
}
else if(algo=="sgbm")
{
Ptr<StereoSGBM> matcher = StereoSGBM::create(0,max_disp,wsize);
matcher->setUniquenessRatio(0);
matcher->setDisp12MaxDiff(1000000);
matcher->setSpeckleWindowSize(0);
matcher->setP1(24*wsize*wsize);
matcher->setP2(96*wsize*wsize);
matcher->setMode(StereoSGBM::MODE_SGBM_3WAY);
ROI = computeROI(left_for_matcher.size(),matcher);
wls_filter = createDisparityWLSFilterGeneric(false);
wls_filter->setDepthDiscontinuityRadius((int)ceil(0.5*wsize));
matching_time = (double)getTickCount();
matcher->compute(left_for_matcher,right_for_matcher,left_disp);
matching_time = ((double)getTickCount() - matching_time)/getTickFrequency();
}
wls_filter->setLambda(lambda);
wls_filter->setSigmaColor(sigma);
//filtering_time = (double)getTickCount();
wls_filter->filter(left_disp,imgLeft,filtered_disp,Mat(),ROI);
//filtering_time = ((double)getTickCount() - filtering_time)/getTickFrequency();
}
//collect and print all the stats:
/*cout.precision(2);
cout<<"Matching time: "<<matching_time<<"s"<<endl;
cout<<"Filtering time: "<<filtering_time<<"s"<<endl;
cout<<endl;*/
if(dst_path!="None"){
//Mat filtered_disp_vis;
getDisparityVis(filtered_disp,filtered_disp_vis,vis_mult);
imwrite(dst_path,filtered_disp_vis);
}
if(dst_raw_path!="None"){
//Mat raw_disp_vis;
getDisparityVis(left_disp,raw_disp_vis,vis_mult);
imwrite(dst_raw_path,raw_disp_vis);
}
if(dst_conf_path!="None"){
imwrite(dst_conf_path,conf_map);
}
if(!no_display)
{
/*// Displays the original images
namedWindow("left", WINDOW_AUTOSIZE);
imshow("left", imgLeft);
namedWindow("right", WINDOW_AUTOSIZE);
imshow("right", imgRight);*/
/*if(!noGT)
{
Mat GT_disp_vis;
getDisparityVis(GT_disp,GT_disp_vis,vis_mult);
namedWindow("ground-truth disparity", WINDOW_AUTOSIZE);
imshow("ground-truth disparity", GT_disp_vis);
}*/
/*//Displays DM without filter
Mat raw_disp_vis;
getDisparityVis(left_disp,raw_disp_vis,vis_mult);
namedWindow("raw disparity", WINDOW_AUTOSIZE);
imshow("raw disparity", raw_disp_vis);*/
//Displays filtered DM
getDisparityVis(filtered_disp,filtered_disp_vis,vis_mult);
//namedWindow("filtered disparity", WINDOW_AUTOSIZE);
//imshow("filtered disparity", filtered_disp_vis);
/* Color Maps:
* OpenCV method to change a grayscale image to a color model.
* The human vision may have difficulty perceiving small
* differences in shades of gray, but better perceives the
* changes between colors.
*
* More Info: http://docs.opencv.org/3.1.0/d3/d50/group__imgproc__colormap.html#gsc.tab=0
*/
//Applying color maps (different DM visualization)
applyColorMap(filtered_disp_vis, imgBONE, COLORMAP_BONE);
imshow("Color Map BONE", imgBONE);
applyColorMap(filtered_disp_vis, imgHOT, COLORMAP_HOT);
imshow("Color Map HOT", imgHOT);
applyColorMap(filtered_disp_vis, imgCalorHSV, COLORMAP_HSV);
imshow("Color Map HSV", imgCalorHSV);
cvtColor(m_imageRight, imgOutOne, COLOR_BGR2RGB);
cvtColor(m_imageLeft, imgOutTwo, COLOR_BGR2RGB);
videoOutOriginalOne.write(imgOutOne);
videoOutOriginalTwo.write(imgOutTwo);
videoOutDisparityBONE.write(imgBONE);
videoOutDisparityHOT.write(imgHOT);
videoOutDisparityHSV.write(imgCalorHSV);
/*//Applying sum with original image and color map (another form of visualization)
//addWeighted(imgCalorJET, 0.8, imgLeft, 0.2, 1, imgAdd);
//imshow("Add Weighted", imgAdd);*/
//waitKey();
//! [visualization]
}
}
Rect disparidade::computeROI(Size2i src_sz, Ptr<StereoMatcher> matcher_instance){
int min_disparity = matcher_instance->getMinDisparity();
int num_disparities = matcher_instance->getNumDisparities();
int block_size = matcher_instance->getBlockSize();
int bs2 = block_size/2;
int minD = min_disparity, maxD = min_disparity + num_disparities - 1;
int xmin = maxD + bs2;
int xmax = src_sz.width + minD - bs2;
int ymin = bs2;
int ymax = src_sz.height - bs2;
Rect r(xmin, ymin, xmax - xmin, ymax - ymin);
return r;
}