-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtrain.py
344 lines (282 loc) · 11.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import os
import uuid
import yaml
import gc
import numpy as np
from PIL import Image
import configargparse
import tqdm
import warnings
warnings.filterwarnings("ignore")
import torch
from torch import nn
from torch.utils.tensorboard import SummaryWriter
from data_loader import DataHandler
from configs import *
from radfoam_model.scene import RadFoamScene
from radfoam_model.utils import psnr
import radfoam
seed = 42
torch.random.manual_seed(seed)
np.random.seed(seed)
def train(args, pipeline_args, model_args, optimizer_args, dataset_args):
device = torch.device(model_args.device)
# Setting up output directory
if not pipeline_args.debug:
if len(pipeline_args.experiment_name) == 0:
unique_str = str(uuid.uuid4())[:8]
experiment_name = f"{dataset_args.scene}@{unique_str}"
else:
experiment_name = pipeline_args.experiment_name
out_dir = f"output/{experiment_name}"
writer = SummaryWriter(out_dir, purge_step=0)
os.makedirs(f"{out_dir}/test", exist_ok=True)
def represent_list_inline(dumper, data):
return dumper.represent_sequence(
"tag:yaml.org,2002:seq", data, flow_style=True
)
yaml.add_representer(list, represent_list_inline)
# Save the arguments to a YAML file
with open(f"{out_dir}/config.yaml", "w") as yaml_file:
yaml.dump(vars(args), yaml_file, default_flow_style=False)
# Setting up dataset
iter2downsample = dict(
zip(
dataset_args.downsample_iterations,
dataset_args.downsample,
)
)
train_data_handler = DataHandler(
dataset_args, rays_per_batch=1_000_000, device=device
)
downsample = iter2downsample[0]
train_data_handler.reload(split="train", downsample=downsample)
test_data_handler = DataHandler(
dataset_args, rays_per_batch=0, device=device
)
test_data_handler.reload(
split="test", downsample=min(dataset_args.downsample)
)
test_ray_batch_fetcher = radfoam.BatchFetcher(
test_data_handler.rays, batch_size=1, shuffle=False
)
test_rgb_batch_fetcher = radfoam.BatchFetcher(
test_data_handler.rgbs, batch_size=1, shuffle=False
)
# Define viewer settings
viewer_options = {
"camera_pos": train_data_handler.viewer_pos,
"camera_up": train_data_handler.viewer_up,
"camera_forward": train_data_handler.viewer_forward,
}
# Setting up pipeline
rgb_loss = nn.SmoothL1Loss(reduction="none")
# Setting up model
model = RadFoamScene(
args=model_args,
device=device,
points=train_data_handler.points3D,
points_colors=train_data_handler.points3D_colors,
)
# Setting up optimizer
model.declare_optimizer(
args=optimizer_args,
warmup=pipeline_args.densify_from,
max_iterations=pipeline_args.iterations,
)
def test_render(
test_data_handler, ray_batch_fetcher, rgb_batch_fetcher, debug=False
):
rays = test_data_handler.rays
points, _, _, _ = model.get_trace_data()
start_points = model.get_starting_point(
rays[:, 0, 0].cuda(), points, model.aabb_tree
)
psnr_list = []
with torch.no_grad():
for i in range(rays.shape[0]):
ray_batch = ray_batch_fetcher.next()[0]
rgb_batch = rgb_batch_fetcher.next()[0]
output, _, _, _, _ = model(ray_batch, start_points[i])
# White background
opacity = output[..., -1:]
rgb_output = output[..., :3] + (1 - opacity)
rgb_output = rgb_output.reshape(*rgb_batch.shape).clip(0, 1)
img_psnr = psnr(rgb_output, rgb_batch).mean()
psnr_list.append(img_psnr)
torch.cuda.synchronize()
if not debug:
error = np.uint8((rgb_output - rgb_batch).cpu().abs() * 255)
rgb_output = np.uint8(rgb_output.cpu() * 255)
rgb_batch = np.uint8(rgb_batch.cpu() * 255)
im = Image.fromarray(
np.concatenate([rgb_output, rgb_batch, error], axis=1)
)
im.save(
f"{out_dir}/test/rgb_{i:03d}_psnr_{img_psnr:.3f}.png"
)
average_psnr = sum(psnr_list) / len(psnr_list)
if not debug:
f = open(f"{out_dir}/metrics.txt", "w")
f.write(f"Average PSNR: {average_psnr}")
f.close()
return average_psnr
def train_loop(viewer):
print("Training")
torch.cuda.synchronize()
data_iterator = train_data_handler.get_iter()
ray_batch, rgb_batch = next(data_iterator)
triangulation_update_period = 1
iters_since_update = 1
iters_since_densification = 0
next_densification_after = 1
with tqdm.trange(pipeline_args.iterations) as train:
for i in train:
if viewer is not None:
model.update_viewer(viewer)
viewer.step(i)
if i in iter2downsample and i:
downsample = iter2downsample[i]
train_data_handler.reload(
split="train", downsample=downsample
)
data_iterator = train_data_handler.get_iter()
ray_batch, rgb_batch = next(data_iterator)
depth_quantiles = (
torch.rand(*ray_batch.shape[:-1], 2, device=device)
.sort(dim=-1, descending=True)
.values
)
rgba_output, depth, _, _, _ = model(
ray_batch,
depth_quantiles=depth_quantiles,
)
# White background
opacity = rgba_output[..., -1:]
if pipeline_args.white_background:
rgb_output = rgba_output[..., :3] + (1 - opacity)
else:
rgb_output = rgba_output[..., :3]
color_loss = rgb_loss(rgb_batch, rgb_output)
opacity_loss = ((1 - opacity) ** 2).mean()
valid_depth_mask = (depth > 0).all(dim=-1)
quant_loss = (depth[..., 0] - depth[..., 1]).abs()
quant_loss = (quant_loss * valid_depth_mask).mean()
w_depth = pipeline_args.quantile_weight * min(
2 * i / pipeline_args.iterations, 1
)
loss = color_loss.mean() + opacity_loss + w_depth * quant_loss
model.optimizer.zero_grad(set_to_none=True)
# Hide latency of data loading behind the backward pass
event = torch.cuda.Event()
event.record()
loss.backward()
event.synchronize()
ray_batch, rgb_batch = next(data_iterator)
model.optimizer.step()
model.update_learning_rate(i)
train.set_postfix(color_loss=f"{color_loss.mean().item():.5f}")
if i % 100 == 99 and not pipeline_args.debug:
writer.add_scalar("train/rgb_loss", color_loss.mean(), i)
num_points = model.primal_points.shape[0]
writer.add_scalar("test/num_points", num_points, i)
test_psnr = test_render(
test_data_handler,
test_ray_batch_fetcher,
test_rgb_batch_fetcher,
True,
)
writer.add_scalar("test/psnr", test_psnr, i)
writer.add_scalar(
"lr/points_lr", model.xyz_scheduler_args(i), i
)
writer.add_scalar(
"lr/density_lr", model.den_scheduler_args(i), i
)
writer.add_scalar(
"lr/attr_lr", model.attr_dc_scheduler_args(i), i
)
if iters_since_update >= triangulation_update_period:
model.update_triangulation(incremental=True)
iters_since_update = 0
if triangulation_update_period < 100:
triangulation_update_period += 2
iters_since_update += 1
if i + 1 >= pipeline_args.densify_from:
iters_since_densification += 1
if (
iters_since_densification == next_densification_after
and model.primal_points.shape[0]
< 0.9 * model.num_final_points
):
point_error, point_contribution = model.collect_error_map(
train_data_handler, pipeline_args.white_background
)
model.prune_and_densify(
point_error,
point_contribution,
pipeline_args.densify_factor,
)
model.update_triangulation(incremental=False)
triangulation_update_period = 1
gc.collect()
# Linear growth
iters_since_densification = 0
next_densification_after = int(
(
(pipeline_args.densify_factor - 1)
* model.primal_points.shape[0]
* (
pipeline_args.densify_until
- pipeline_args.densify_from
)
)
/ (model.num_final_points - model.num_init_points)
)
next_densification_after = max(
next_densification_after, 100
)
if i == optimizer_args.freeze_points:
model.update_triangulation(incremental=False)
if viewer is not None and viewer.is_closed():
break
model.save_ply(f"{out_dir}/scene.ply")
model.save_pt(f"{out_dir}/model.pt")
del data_iterator
if pipeline_args.viewer:
model.show(
train_loop, iterations=pipeline_args.iterations, **viewer_options
)
else:
train_loop(viewer=None)
if not pipeline_args.debug:
writer.close()
test_render(
test_data_handler,
test_ray_batch_fetcher,
test_rgb_batch_fetcher,
pipeline_args.debug,
)
def main():
parser = configargparse.ArgParser(
default_config_files=["arguments/mipnerf360_outdoor_config.yaml"]
)
model_params = ModelParams(parser)
pipeline_params = PipelineParams(parser)
optimization_params = OptimizationParams(parser)
dataset_params = DatasetParams(parser)
# Add argument to specify a custom config file
parser.add_argument(
"-c", "--config", is_config_file=True, help="Path to config file"
)
# Parse arguments
args = parser.parse_args()
train(
args,
pipeline_params.extract(args),
model_params.extract(args),
optimization_params.extract(args),
dataset_params.extract(args),
)
if __name__ == "__main__":
main()