-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtest.py
120 lines (92 loc) · 3.43 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import numpy as np
from PIL import Image
import configargparse
import warnings
warnings.filterwarnings("ignore")
import torch
from data_loader import DataHandler
from configs import *
from radfoam_model.scene import RadFoamScene
from radfoam_model.utils import psnr
import radfoam
seed = 42
torch.random.manual_seed(seed)
np.random.seed(seed)
def test(args, pipeline_args, model_args, optimizer_args, dataset_args):
checkpoint = args.config.replace("/config.yaml", "")
os.makedirs(os.path.join(checkpoint, "test"), exist_ok=True)
device = torch.device(args.device)
test_data_handler = DataHandler(
dataset_args, rays_per_batch=0, device=device
)
test_data_handler.reload(
split="test", downsample=min(dataset_args.downsample)
)
test_ray_batch_fetcher = radfoam.BatchFetcher(
test_data_handler.rays, batch_size=1, shuffle=False
)
test_rgb_batch_fetcher = radfoam.BatchFetcher(
test_data_handler.rgbs, batch_size=1, shuffle=False
)
# Setting up model
model = RadFoamScene(args=model_args, device=device)
model.load_pt(f"{checkpoint}/model.pt")
def test_render(
test_data_handler, ray_batch_fetcher, rgb_batch_fetcher
):
rays = test_data_handler.rays
points, _, _, _ = model.get_trace_data()
start_points = model.get_starting_point(
rays[:, 0, 0].cuda(), points, model.aabb_tree
)
psnr_list = []
with torch.no_grad():
for i in range(rays.shape[0]):
ray_batch = ray_batch_fetcher.next()[0]
rgb_batch = rgb_batch_fetcher.next()[0]
output, _, _, _, _ = model(ray_batch, start_points[i])
# White background
opacity = output[..., -1:]
rgb_output = output[..., :3] + (1 - opacity)
rgb_output = rgb_output.reshape(*rgb_batch.shape).clip(0, 1)
img_psnr = psnr(rgb_output, rgb_batch).mean()
psnr_list.append(img_psnr)
torch.cuda.synchronize()
error = np.uint8((rgb_output - rgb_batch).cpu().abs() * 255)
rgb_output = np.uint8(rgb_output.cpu() * 255)
rgb_batch = np.uint8(rgb_batch.cpu() * 255)
im = Image.fromarray(
np.concatenate([rgb_output, rgb_batch, error], axis=1)
)
im.save(
f"{checkpoint}/test/rgb_{i:03d}_psnr_{img_psnr:.3f}.png"
)
average_psnr = sum(psnr_list) / len(psnr_list)
f = open(f"{checkpoint}/metrics.txt", "w")
f.write(f"Average PSNR: {average_psnr}")
f.close()
return average_psnr
test_render(
test_data_handler, test_ray_batch_fetcher, test_rgb_batch_fetcher
)
def main():
parser = configargparse.ArgParser()
model_params = ModelParams(parser)
dataset_params = DatasetParams(parser)
pipeline_params = PipelineParams(parser)
optimization_params = OptimizationParams(parser)
# Add argument to specify a custom config file
parser.add_argument(
"-c", "--config", is_config_file=True, help="Path to config file"
)
# Parse arguments
args = parser.parse_args()
test(
args,
pipeline_params.extract(args),
model_params.extract(args),
optimization_params.extract(args),
dataset_params.extract(args),
)
if __name__ == "__main__":
main()