-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathloadFeatures.py
87 lines (65 loc) · 3.27 KB
/
loadFeatures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from Helper.extractImageFeatures import Transformer
from torchvision import models
from nltk.corpus import stopwords as sw
from collections import Counter
import numpy as np
import torch
import re
class Features():
"""docstring for Features."""
def __init__(self, featuresDir, dataType):
super(Features, self).__init__()
vecImages = torch.load('{0}/imgFeatures_{1}'.format(featuresDir, dataType))
vecAnnotations = np.load('{0}/annotationFeatures_{1}.npy'.format(featuresDir, dataType), allow_pickle=True).item()
self.vecWords = np.load('{0}/wordFeatures.npy'.format(featuresDir), encoding='latin1', allow_pickle=True).item()
self.annotations = np.load('{0}/annotations_{1}.npy'.format(featuresDir, dataType), allow_pickle=True).item()
self.ann2words = np.load('{0}/annotation2word_{1}.npy'.format(featuresDir, dataType), allow_pickle=True).item()
self.stopwords = sw.words("english")
self.dictionnary = list(self.vecWords.keys())
self.imgIds = np.sort(list(vecImages.keys()))
self.imageMatrix = torch.stack([vecImages[imId] for imId in self.imgIds])
self.annotationMatrix = torch.stack([vecAnnotations[imId] for imId in self.imgIds])
self.cat2im = np.load('{0}/cat2im_{1}.npy'.format(featuresDir, dataType), allow_pickle=True).item()
self.im2cat = np.load('{0}/im2cat_{1}.npy'.format(featuresDir, dataType), allow_pickle=True).item()
self.imageModel = None
self.transformer = None
def getVisualFeatures(self):
return self.imageMatrix
def getTagFeatures(self):
return self.annotationMatrix
def findImagesFromWordInAnnotations(self, word):
ids = [imId for imId, words in self.ann2words.items() if word in words]
return ids
def findImagesInCategory(self, cat):
return self.cat2im[cat]
def mostCommonWordsIn(self, ids, n_tags):
words = [word for id in ids for word in self.ann2words[id]]
most_commons = Counter(words).most_common(n_tags)
return list(zip(*most_commons))
def sentenceToWords(self, sentence):
words = re.sub('[\.,"]|\'s', '', sentence.lower()).split()
return [word for word in words if word not in self.stopwords and word in self.dictionnary]
def sentencesToWords(self, sentences):
return self.sentenceToWords(' '.join(sentences))
def sentenceToVec(self, sentence):
return np.sum(self.vecWords[word] for word in self.sentenceToWords(sentence))
def sentencesToVec(self, sentences):
return self.sentenceToVec(' '.join(sentences))
def imageToVec(self, image):
if not self.imageModel:
self.loadImageModel()
imageTensor = self.transformer(image)
# import ipdb; ipdb.set_trace()
# import numpy as np
# print(np.array(image))
# print(imageTensor)
# import matplotlib.pyplot as plt
# plt.axis('off')
# plt.imshow(imageTensor.permute(1,2,0).numpy())
# plt.show()
output = self.imageModel(imageTensor.unsqueeze(0)).squeeze()
return output
def loadImageModel(self):
resnet50 = models.resnet50(pretrained=True)
self.imageModel = torch.nn.Sequential(*(list(resnet50.children())[:-1]))
self.transformer = Transformer()