diff --git a/tests/ttnn/unit_tests/operations/test_new_conv2d.py b/tests/ttnn/unit_tests/operations/test_new_conv2d.py index 05d477aae6f1..5e20f2bf371b 100644 --- a/tests/ttnn/unit_tests/operations/test_new_conv2d.py +++ b/tests/ttnn/unit_tests/operations/test_new_conv2d.py @@ -789,7 +789,7 @@ def test_conv_for_segformer_512x512( ) @pytest.mark.parametrize( "weights_dtype", - [ttnn.bfloat16, ttnn.bfloat8_b], + [ttnn.bfloat16], ) @pytest.mark.parametrize( "activations_dtype", @@ -1220,7 +1220,7 @@ def test_resnet50_conv_wh_fp32( ) @pytest.mark.parametrize( "weights_dtype", - [ttnn.bfloat8_b], + [ttnn.bfloat16], ) @pytest.mark.parametrize( "activations_dtype", @@ -1503,7 +1503,7 @@ def test_sd_conv_wh( ) @pytest.mark.parametrize( "weights_dtype", - [ttnn.bfloat8_b], + [ttnn.bfloat16], ) @pytest.mark.parametrize( "activations_dtype", @@ -1958,6 +1958,7 @@ def test_unet_conv_groups_8_wh( ) +@skip_for_grayskull() @pytest.mark.parametrize("device_params", [{"l1_small_size": 16384}], indirect=True) @pytest.mark.parametrize( "batch_size, output_channels, input_channels, input_height, input_width, filter_height, filter_width, stride_h, stride_w, pad_h, pad_w, config_override", @@ -2019,6 +2020,7 @@ def test_halo_reshard_conv( ) +@skip_for_grayskull() @pytest.mark.skip("New API needs to be tested") @pytest.mark.parametrize("device_params", [{"l1_small_size": 16384}], indirect=True) @pytest.mark.parametrize( @@ -2380,6 +2382,7 @@ def test_yolov4_conv_groups_larger_than_one( ) +@skip_for_grayskull() @pytest.mark.parametrize("device_params", [{"l1_small_size": 16384}], indirect=True) @pytest.mark.parametrize( " output_channels, input_channels, input_height, input_width, filter_height, filter_width, stride_h, stride_w, pad_h, pad_w, shard_layout, config_override, use_shallow_conv_variant, groups", @@ -2630,7 +2633,7 @@ def test_conv_for_vanilla_unet( ) @pytest.mark.parametrize( "weights_dtype", - [ttnn.bfloat8_b, ttnn.bfloat16], + [ttnn.bfloat16], ) @pytest.mark.parametrize( "activations_dtype", @@ -2870,6 +2873,7 @@ def test_shallow_conv_with_tiled_input(device): # Tests running conv2d which maps to matmul w/o sharding the input tensor. # Output tensor is in DRAM. +@skip_for_grayskull() @pytest.mark.parametrize("device_params", [{"l1_small_size": 16384}], indirect=True) @pytest.mark.parametrize("tiled_input", [True, False]) @pytest.mark.parametrize("input_on_device", [True, False])