Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Help for DQN with nested action and observation space #706

Open
armusone opened this issue Feb 13, 2022 · 0 comments
Open

Help for DQN with nested action and observation space #706

armusone opened this issue Feb 13, 2022 · 0 comments

Comments

@armusone
Copy link

Hello everybody,
I have been trying to create a custom DQN for a project but couldn't find any specification on networks with multiple inputs and multiple actions.
So far I created a custom environment with the following action_spec
self._action_spec = { 'Action1': array_spec.BoundedArraySpec( shape=(), dtype=np.int32, minimum=0, maximum=5, name='action1' ), 'Action2': array_spec.BoundedArraySpec( shape=(), dtype=np.float32, minimum=0, maximum=1000, name='action2' ) }
and observation_spec
self._observation_spec = { 'Obs1': array_spec.ArraySpec( shape=(3, 82), dtype=np.float32, name='obs1' ), 'Obs2': array_spec.ArraySpec( shape=(6,), dtype=np.float32, name='obs2' ) }

I tested the environment with utils.validate_py_environment(environment, episodes=5) and I got no error.
The model I am trying to build is as follow:
input_one = tf.keras.layers.Input((3,83), name='Obs1')
flatten = tf.keras.layers.Flatten()(input_one )
dense_one = tf.keras.layers.Dense(60, name='Dense1_Obs1')(flatten)
dense_two = tf.keras.layers.Dense(30, name='Dense2_Obs1')(dense_one )
action_one = tf.keras.layers.Dense(5, name='Action1')(dense_two )
input_two = tf.keras.layers.Input((6,), name='Obs2')
dense_three = tf.keras.layers.Dense(3, name='Dense1_Obs2')(input_two )
concatenate = tf.keras.layers.concatenate([dense_three , action_one ])
action_two= tf.keras.layers.Dense(1, name='Action2')(concatenate)
my_model= tf.keras.Model(inputs=[input_one , input_two ], outputs=[action_one , action_two])

I then used q_net = tf_agents.networks.Sequential([my_model]) as described in #457 and initialize the agent as:
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
train_step_counter = tf.Variable(0)
agent = dqn_agent.DqnAgent( train_env.time_step_spec(), train_env.action_spec(), q_network=q_net, optimizer=optimizer, td_errors_loss_fn=common.element_wise_squared_loss, train_step_counter=train_step_counter)
agent.initialize()

But got the following error:
Only scalar actions are supported now, but action spec is: {'Action1': BoundedTensorSpec(shape=(), dtype=tf.int32, name='action1', minimum=array(0, dtype=int32), maximum=array(5, dtype=int32)), 'Action2': BoundedTensorSpec(shape=(), dtype=tf.float32, name='action2', minimum=array(0., dtype=float32), maximum=array(1000., dtype=float32))} In call to configurable 'DqnAgent' (<class 'tf_agents.agents.dqn.dqn_agent.DqnAgent'>)

Could you please help me with this issue?
Thank you very much,
Antonio

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant