You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hello everybody,
I have been trying to create a custom DQN for a project but couldn't find any specification on networks with multiple inputs and multiple actions.
So far I created a custom environment with the following action_spec self._action_spec = { 'Action1': array_spec.BoundedArraySpec( shape=(), dtype=np.int32, minimum=0, maximum=5, name='action1' ), 'Action2': array_spec.BoundedArraySpec( shape=(), dtype=np.float32, minimum=0, maximum=1000, name='action2' ) }
and observation_spec self._observation_spec = { 'Obs1': array_spec.ArraySpec( shape=(3, 82), dtype=np.float32, name='obs1' ), 'Obs2': array_spec.ArraySpec( shape=(6,), dtype=np.float32, name='obs2' ) }
I tested the environment with utils.validate_py_environment(environment, episodes=5) and I got no error.
The model I am trying to build is as follow: input_one = tf.keras.layers.Input((3,83), name='Obs1') flatten = tf.keras.layers.Flatten()(input_one ) dense_one = tf.keras.layers.Dense(60, name='Dense1_Obs1')(flatten) dense_two = tf.keras.layers.Dense(30, name='Dense2_Obs1')(dense_one ) action_one = tf.keras.layers.Dense(5, name='Action1')(dense_two ) input_two = tf.keras.layers.Input((6,), name='Obs2') dense_three = tf.keras.layers.Dense(3, name='Dense1_Obs2')(input_two ) concatenate = tf.keras.layers.concatenate([dense_three , action_one ]) action_two= tf.keras.layers.Dense(1, name='Action2')(concatenate) my_model= tf.keras.Model(inputs=[input_one , input_two ], outputs=[action_one , action_two])
I then used q_net = tf_agents.networks.Sequential([my_model]) as described in #457 and initialize the agent as: optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) train_step_counter = tf.Variable(0) agent = dqn_agent.DqnAgent( train_env.time_step_spec(), train_env.action_spec(), q_network=q_net, optimizer=optimizer, td_errors_loss_fn=common.element_wise_squared_loss, train_step_counter=train_step_counter) agent.initialize()
But got the following error: Only scalar actions are supported now, but action spec is: {'Action1': BoundedTensorSpec(shape=(), dtype=tf.int32, name='action1', minimum=array(0, dtype=int32), maximum=array(5, dtype=int32)), 'Action2': BoundedTensorSpec(shape=(), dtype=tf.float32, name='action2', minimum=array(0., dtype=float32), maximum=array(1000., dtype=float32))} In call to configurable 'DqnAgent' (<class 'tf_agents.agents.dqn.dqn_agent.DqnAgent'>)
Could you please help me with this issue?
Thank you very much,
Antonio
The text was updated successfully, but these errors were encountered:
Hello everybody,
I have been trying to create a custom DQN for a project but couldn't find any specification on networks with multiple inputs and multiple actions.
So far I created a custom environment with the following action_spec
self._action_spec = { 'Action1': array_spec.BoundedArraySpec( shape=(), dtype=np.int32, minimum=0, maximum=5, name='action1' ), 'Action2': array_spec.BoundedArraySpec( shape=(), dtype=np.float32, minimum=0, maximum=1000, name='action2' ) }
and observation_spec
self._observation_spec = { 'Obs1': array_spec.ArraySpec( shape=(3, 82), dtype=np.float32, name='obs1' ), 'Obs2': array_spec.ArraySpec( shape=(6,), dtype=np.float32, name='obs2' ) }
I tested the environment with
utils.validate_py_environment(environment, episodes=5)
and I got no error.The model I am trying to build is as follow:
input_one = tf.keras.layers.Input((3,83), name='Obs1')
flatten = tf.keras.layers.Flatten()(input_one )
dense_one = tf.keras.layers.Dense(60, name='Dense1_Obs1')(flatten)
dense_two = tf.keras.layers.Dense(30, name='Dense2_Obs1')(dense_one )
action_one = tf.keras.layers.Dense(5, name='Action1')(dense_two )
input_two = tf.keras.layers.Input((6,), name='Obs2')
dense_three = tf.keras.layers.Dense(3, name='Dense1_Obs2')(input_two )
concatenate = tf.keras.layers.concatenate([dense_three , action_one ])
action_two= tf.keras.layers.Dense(1, name='Action2')(concatenate)
my_model= tf.keras.Model(inputs=[input_one , input_two ], outputs=[action_one , action_two])
I then used
q_net = tf_agents.networks.Sequential([my_model])
as described in #457 and initialize the agent as:optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
train_step_counter = tf.Variable(0)
agent = dqn_agent.DqnAgent( train_env.time_step_spec(), train_env.action_spec(), q_network=q_net, optimizer=optimizer, td_errors_loss_fn=common.element_wise_squared_loss, train_step_counter=train_step_counter)
agent.initialize()
But got the following error:
Only scalar actions are supported now, but action spec is: {'Action1': BoundedTensorSpec(shape=(), dtype=tf.int32, name='action1', minimum=array(0, dtype=int32), maximum=array(5, dtype=int32)), 'Action2': BoundedTensorSpec(shape=(), dtype=tf.float32, name='action2', minimum=array(0., dtype=float32), maximum=array(1000., dtype=float32))} In call to configurable 'DqnAgent' (<class 'tf_agents.agents.dqn.dqn_agent.DqnAgent'>)
Could you please help me with this issue?
Thank you very much,
Antonio
The text was updated successfully, but these errors were encountered: