forked from tencent-quantum-lab/tensorcircuit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_ensemble.py
68 lines (54 loc) · 1.93 KB
/
test_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import sys
import tensorflow as tf
import numpy as np
thisfile = os.path.abspath(__file__)
modulepath = os.path.dirname(os.path.dirname(thisfile))
sys.path.insert(0, modulepath)
from tensorcircuit.templates.ensemble import bagging
def test_ensemble_bagging():
data_amount = 100 # Amount of data to be used
linear_dimension = 4 # linear demension of the data
epochs = 10
batch_size = 32
lr = 1e-3
x_train, y_train = (
np.ones([data_amount, linear_dimension]),
np.ones([data_amount, 1]),
)
obj_bagging = bagging()
def model():
DROP = 0.1
activation = "selu"
inputs = tf.keras.Input(shape=(linear_dimension,), name="digits")
x0 = tf.keras.layers.Dense(
1,
kernel_regularizer=tf.keras.regularizers.l2(9.613e-06),
activation=activation,
)(inputs)
x0 = tf.keras.layers.Dropout(DROP)(x0)
x = tf.keras.layers.Dense(
1,
kernel_regularizer=tf.keras.regularizers.l2(1e-07),
activation="sigmoid",
)(x0)
model = tf.keras.Model(inputs, x)
return model
obj_bagging.append(model(), False)
obj_bagging.append(model(), False)
obj_bagging.append(model(), False)
obj_bagging.compile(
loss=tf.keras.losses.BinaryCrossentropy(),
optimizer=tf.keras.optimizers.Adam(lr),
metrics=[tf.keras.metrics.AUC(), "acc"],
)
obj_bagging.train(
x=x_train, y=y_train, epochs=epochs, batch_size=batch_size, verbose=0
)
v_weight = obj_bagging.predict(x_train, "weight")
v_average = obj_bagging.predict(x_train, "average")
v_most = obj_bagging.predict(x_train, "most")
validation_data = []
validation_data.append(obj_bagging.eval([y_train, v_weight], "acc"))
validation_data.append(obj_bagging.eval([y_train, v_average], "auc"))
validation_data.append(obj_bagging.eval([y_train, v_most], "acc"))