-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathobject_detect.py
150 lines (134 loc) · 8.18 KB
/
object_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from ctypes import * # Import libraries
import math
import random
import os
import cv2
import numpy as np
import time
import darknet
def convertBack(x, y, w, h):
xmin = int(round(x - (w / 2)))
xmax = int(round(x + (w / 2)))
ymin = int(round(y - (h / 2)))
ymax = int(round(y + (h / 2)))
return xmin, ymin, xmax, ymax
def cvDrawBoxes(detections, img):
# Colored labels dictionary
color_dict = {
'person' : [0, 255, 255], 'bicycle': [238, 123, 158], 'car' : [24, 245, 217], 'motorbike' : [224, 119, 227],
'aeroplane' : [154, 52, 104], 'bus' : [179, 50, 247], 'train' : [180, 164, 5], 'truck' : [82, 42, 106],
'boat' : [201, 25, 52], 'traffic light' : [62, 17, 209], 'fire hydrant' : [60, 68, 169], 'stop sign' : [199, 113, 167],
'parking meter' : [19, 71, 68], 'bench' : [161, 83, 182], 'bird' : [75, 6, 145], 'cat' : [100, 64, 151],
'dog' : [156, 116, 171], 'horse' : [88, 9, 123], 'sheep' : [181, 86, 222], 'cow' : [116, 238, 87],'elephant' : [74, 90, 143],
'bear' : [249, 157, 47], 'zebra' : [26, 101, 131], 'giraffe' : [195, 130, 181], 'backpack' : [242, 52, 233],
'umbrella' : [131, 11, 189], 'handbag' : [221, 229, 176], 'tie' : [193, 56, 44], 'suitcase' : [139, 53, 137],
'frisbee' : [102, 208, 40], 'skis' : [61, 50, 7], 'snowboard' : [65, 82, 186], 'sports ball' : [65, 82, 186],
'kite' : [153, 254, 81],'baseball bat' : [233, 80, 195],'baseball glove' : [165, 179, 213],'skateboard' : [57, 65, 211],
'surfboard' : [98, 255, 164],'tennis racket' : [205, 219, 146],'bottle' : [140, 138, 172],'wine glass' : [23, 53, 119],
'cup' : [102, 215, 88],'fork' : [198, 204, 245],'knife' : [183, 132, 233],'spoon' : [14, 87, 125],
'bowl' : [221, 43, 104],'banana' : [181, 215, 6],'apple' : [16, 139, 183],'sandwich' : [150, 136, 166],'orange' : [219, 144, 1],
'broccoli' : [123, 226, 195],'carrot' : [230, 45, 209],'hot dog' : [252, 215, 56],'pizza' : [234, 170, 131],
'donut' : [36, 208, 234],'cake' : [19, 24, 2],'chair' : [115, 184, 234],'sofa' : [125, 238, 12],
'pottedplant' : [57, 226, 76],'bed' : [77, 31, 134],'diningtable' : [208, 202, 204],'toilet' : [208, 202, 204],
'tvmonitor' : [208, 202, 204],'laptop' : [159, 149, 163],'mouse' : [148, 148, 87],'remote' : [171, 107, 183],
'keyboard' : [33, 154, 135],'cell phone' : [206, 209, 108],'microwave' : [206, 209, 108],'oven' : [97, 246, 15],
'toaster' : [147, 140, 184],'sink' : [157, 58, 24],'refrigerator' : [117, 145, 137],'book' : [155, 129, 244],
'clock' : [53, 61, 6],'vase' : [145, 75, 152],'scissors' : [8, 140, 38],'teddy bear' : [37, 61, 220],
'hair drier' : [129, 12, 229],'toothbrush' : [11, 126, 158]
}
for detection in detections:
x, y, w, h = detection[2][0],\
detection[2][1],\
detection[2][2],\
detection[2][3]
name_tag = str(detection[0].decode())
for name_key, color_val in color_dict.items():
if name_key == name_tag:
color = color_val
xmin, ymin, xmax, ymax = convertBack(
float(x), float(y), float(w), float(h))
pt1 = (xmin, ymin)
pt2 = (xmax, ymax)
cv2.rectangle(img, pt1, pt2, color, 1)
cv2.putText(img,
detection[0].decode() +
" [" + str(round(detection[1] * 100, 2)) + "]",
(pt1[0], pt1[1] - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
color, 2)
return img
netMain = None
metaMain = None
altNames = None
def YOLO():
global metaMain, netMain, altNames
configPath = "./cfg/yolov4.cfg" # Path to cfg
weightPath = "./yolov4.weights" # Path to weights
metaPath = "./cfg/coco.data" # Path to meta data
if not os.path.exists(configPath): # Checks whether file exists otherwise return ValueError
raise ValueError("Invalid config path `" +
os.path.abspath(configPath)+"`")
if not os.path.exists(weightPath):
raise ValueError("Invalid weight path `" +
os.path.abspath(weightPath)+"`")
if not os.path.exists(metaPath):
raise ValueError("Invalid data file path `" +
os.path.abspath(metaPath)+"`")
if netMain is None: # Checks the metaMain, NetMain and altNames. Loads it in script
netMain = darknet.load_net_custom(configPath.encode(
"ascii"), weightPath.encode("ascii"), 0, 1) # batch size = 1
if metaMain is None:
metaMain = darknet.load_meta(metaPath.encode("ascii"))
if altNames is None:
try:
with open(metaPath) as metaFH:
metaContents = metaFH.read()
import re
match = re.search("names *= *(.*)$", metaContents,
re.IGNORECASE | re.MULTILINE)
if match:
result = match.group(1)
else:
result = None
try:
if os.path.exists(result):
with open(result) as namesFH:
namesList = namesFH.read().strip().split("\n")
altNames = [x.strip() for x in namesList]
except TypeError:
pass
except Exception:
pass
#cap = cv2.VideoCapture(0) # Uncomment to use Webcam
cap = cv2.VideoCapture("test2.mp4") # Local Stored video detection - Set input video
frame_width = int(cap.get(3)) # Returns the width and height of capture video
frame_height = int(cap.get(4))
# Set out for video writer
out = cv2.VideoWriter( # Set the Output path for video writer
"./Demo/output.avi", cv2.VideoWriter_fourcc(*"MJPG"), 10.0,
(frame_width, frame_height))
print("Starting the YOLO loop...")
# Create an image we reuse for each detect
darknet_image = darknet.make_image(frame_width, frame_height, 3) # Create image according darknet for compatibility of network
while True: # Load the input frame and write output frame.
prev_time = time.time()
ret, frame_read = cap.read() # Capture frame and return true if frame present
# For Assertion Failed Error in OpenCV
if not ret: # Check if frame present otherwise he break the while loop
break
frame_rgb = cv2.cvtColor(frame_read, cv2.COLOR_BGR2RGB) # Convert frame into RGB from BGR and resize accordingly
frame_resized = cv2.resize(frame_rgb,
(frame_width, frame_height),
interpolation=cv2.INTER_LINEAR)
darknet.copy_image_from_bytes(darknet_image,frame_resized.tobytes()) # Copy that frame bytes to darknet_image
detections = darknet.detect_image(netMain, metaMain, darknet_image, thresh=0.25) # Detection occurs at this line and return detections, for customize we can change the threshold.
image = cvDrawBoxes(detections, frame_resized) # Call the function cvDrawBoxes() for colored bounding box per class
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
print(1/(time.time()-prev_time))
cv2.imshow('Demo', image) # Display Image window
cv2.waitKey(3)
out.write(image) # Write that frame into output video
cap.release() # For releasing cap and out.
out.release()
print(":::Video Write Completed")
if __name__ == "__main__":
YOLO()