-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathprepare_data.py
40 lines (29 loc) · 1.24 KB
/
prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import argparse
import pickle
from scipy.io import wavfile
import numpy as np
def main(args):
in_rate, in_data = wavfile.read(args.in_file)
out_rate, out_data = wavfile.read(args.out_file)
assert in_rate == out_rate, "in_file and out_file must have same sample rate"
sample_size = int(in_rate * args.sample_time)
length = len(in_data) - len(in_data) % sample_size
x = in_data[:length].reshape((-1, 1, sample_size)).astype(np.float32)
y = out_data[:length].reshape((-1, 1, sample_size)).astype(np.float32)
split = lambda d: np.split(d, [int(len(d) * 0.6), int(len(d) * 0.8)])
d = {}
d["x_train"], d["x_valid"], d["x_test"] = split(x)
d["y_train"], d["y_valid"], d["y_test"] = split(y)
d["mean"], d["std"] = d["x_train"].mean(), d["x_train"].std()
# standardize
for key in "x_train", "x_valid", "x_test":
d[key] = (d[key] - d["mean"]) / d["std"]
pickle.dump(d, open(args.data, "wb"))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("in_file")
parser.add_argument("out_file")
parser.add_argument("--data", default="data.pickle")
parser.add_argument("--sample_time", type=float, default=100e-3)
args = parser.parse_args()
main(args)