-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlimelight_mk2.py
55 lines (39 loc) · 2.26 KB
/
limelight_mk2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#imports used
import cv2
import numpy as np
#Written By Varun Chamarty & Jonathan Le
# runPipeline() is called every frame by Limelight's backend.
def runPipeline(image, llrobot):
# convert the input image to the HSV color space
img_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# that do not fall within the following HSV Min/Max values(min(H,S,V), (max(H,S,V)))
#img_threshold = cv2.inRange(img_hsv, (78, 39, 48), (90, 237, 244))
img_threshold = cv2.inRange(img_hsv, (50, 100, 100), (120, 260, 200))
#Make Adjustments here, left side is the minimum values, right side is the maximum values, adjust accordingly (Hue,Saturation,Brightness Value)
# find contours in the new image
contours, _ = cv2.findContours(img_threshold,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# initialize an empty array of values to send back to the robot
llpython = [0,0,0,0,0,0,0,0]
boxes = []
returnContour = np.array([[]])
# if contours have been detected, draw them
if len(contours) > 0:
cv2.drawContours(image, contours, -1, 255, 2)
for c in contours:#for loop
(x, y, w, h) = cv2.boundingRect(c)
boxes.append([x,y, x+w,y+h])
listofCoordinates = np.asarray(boxes)
left, top = np.min(listofCoordinates, axis=0)[:2]
#finding the top left most value within given threshold
right, bottom = np.max(listofCoordinates, axis=0)[2:]
#finding the bottom right vaues within given threshold
returnContour = [[[(left+right)/(2.0),(top+bottom)/(2.0)]]]
#Find the average of both to find the center of the given rectangle(should work for any size rectangle)
cv2.rectangle(image, (left, top), (right, bottom), (0, 0,255), 2)
#This takes the image, take the two points given to it (leftx,topy)
#and (rightx,bottomy) and draws the rectangle:Numbers are for color(BGR) and line thickness respectively
# record some custom data to send back to the robot
llpython = [1,x,y,w,h,9,8,7]
#return the largest contour for the LL crosshair, the modified image, and custom robot data
return returnContour, image, llpython