-
Notifications
You must be signed in to change notification settings - Fork 247
/
Copy pathextrusion_overview.py
678 lines (618 loc) · 24.4 KB
/
extrusion_overview.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
from __future__ import division
from visual import *
from time import clock
# A tutorial on the extrusion object
# Bruce Sherwood, January 2011
scene.width = 600
scene.height = 800
scene.background = color.white
scene.foreground = color.black
scene.userspin = False
scene.userzoom = False
scene.fov = 0.4
scene.range = 14
contour1 = [(0,-5), (-3,3), (3,3)]
contour2 = [(-2,2.5), (0,5), (2,2.5)]
contour3 = [(-2,2), (2,2), (.5,-2), (-.5,-2)]
class main():
def __init__(self, npages):
self.npages = npages
self.page = 1
self.jumpenabled = False
def showpages(self):
self.y = -13
self.dy = .7
self.w = 12
self.dx = self.w/self.npages
self.x0 = -self.w/2
if self.jumpenabled:
box(pos=(0,self.y,0), size=(self.w,self.dy,.01), color=color.gray(.9))
box(pos=(self.x0+(self.page-.5)*self.dx,self.y,.02), size=(self.dx,self.dy,.01), color=color.gray(.5))
label(pos=(self.x0,self.y), text="Choose a page:", xoffset=-1, opacity=0, box=0, line=0)
for p in range(self.npages):
L = label(pos=(self.x0+(p+.5)*self.dx,self.y), opacity=0, box=0, line=0)
L.text = "%d" % (p+1)
def checkjump(self, mousepos):
if not self.jumpenabled: return None
if (self.y-self.dy/2 <= mousepos.y <= self.y+self.dy/2) and (self.x0 <= mousepos.x <= self.x0+self.npages*self.dx):
return (mousepos.x-self.x0)//self.dx+1
else:
return None # no page change
def pause(self, dt=None): # returns True if jump to new page
t0 = clock()
while True:
rate(30)
if scene.mouse.events:
m = scene.mouse.getevent()
if m.click == 'left':
# check for choosing a new page
newpage = self.checkjump(m.project(normal=(0,0,1)))
if newpage is None:
return False
else:
self.page = newpage
return True
elif scene.kb.keys:
k = scene.kb.getkey()
return False
elif dt:
if clock()-t0 >= dt:
return False
def jump(self, page):
for obj in scene.objects:
obj.visible = False
del obj
scene.mouse.events = 0
while scene.kb.keys > 0:
key = scene.kb.getkey()
self.page = page
self.showpages()
def spin(self, thing, origin, dynamic=False):
origin = vector(origin)
spin = False
if dynamic:
R = 6
dtheta = pi/20
arc = arange(.3,3.2*pi/4,dtheta)
t = 0
while True:
rate(200)
if scene.kb.keys:
scene.kb.getkey()
return False
elif scene.mouse.events:
m = scene.mouse.getevent()
if m.click == 'left':
newpage = self.checkjump(m.project(normal=(0,0,1)))
if newpage is None:
return False
else:
self.page = newpage
return True
elif m.drag == 'right':
spin = True
lastray = scene.mouse.ray
scene.cursor.visible = False
elif m.drop == 'right':
spin = False
scene.cursor.visible = True
elif spin:
if dynamic:
change = thing.frame
else:
change = thing
newray = scene.mouse.ray
dray = newray-lastray
right = newray.cross(change.up).norm() # unit vector to the right
anglex = 20*arcsin(dray.dot(right))
change.rotate(angle=anglex, axis=change.up, origin=origin)
angley = -20*arcsin(dray.dot(change.up))
maxangle = scene.up.diff_angle(change.up)
newup = change.up.rotate(angle=angley, axis=right)
newangle = scene.up.diff_angle(newup)
if newangle < pi/2:
change.rotate(angle=angley, axis=right, origin=origin)
lastray = newray
if dynamic:
thing.x = R*cos(arc)*(1+.3*sin(t))
thing.z = -R*sin(arc)*(1+.3*sin(.5*t))
thing.twist = .05*sin(t)
thing.initial_twist = -.2*sin(t)
thing.up = (0,.4+.2*sin(1.1*t),.6+.4*cos(1.5*t))
thing.xscale = 1+.6*sin(2*t)
t += .01
def makelabel(x=0, y=0, centered=False):
if centered:
return label(pos=(x,y), opacity=0, box=0, line=0)
else:
return label(pos=(x,y), xoffset=1, opacity=0, box=0, line=0)
def drawcontour(origin, contour, ccolor):
origin = vector(origin)
p1 = points(size=8, color=color.red)
curve1 = curve(color=ccolor)
for pt in contour:
pv = vector(pt)
p1.append(origin+pv)
curve1.append(vector(origin+pv)-vector(0,0,.1))
if pages.pause(.25): return True
curve1.append(origin+vector(contour[0])-vector(0,0,.1))
return False
#-------------------------------------------------------------------------
def intro():
L1 = makelabel(-10,12)
L1.text = """
This is an overview on how to make an extrusion object like the one shown here.
More information is in the detailed documentation installed with VPython.
This object consists of a 2D shape and an extrusion path.
Click or press a key to proceed.
"""
square = shapes.rectangle(width=4)
hole1 = shapes.circle(pos=(.7,.7), radius=.7)
hole2 = Polygon([(-1.2,0.8), (1.6,-1.5), (-1.2,-1.5)])
disk = shapes.circle(pos=(0,2), radius=1)
f = frame()
P = paths.arc(pos=(-1.5,2.5,0), radius=6, np=5*32, angle1=.3, angle2=3.2*pi/4)
path = list(P.pos)
P0 = vector(path[0])
path.insert(1,P0+0.01*norm(vector(path[1])-P0))
E = extrusion(frame=f, pos=path,
color=(0.904,0.693,0.595), material=materials.plastic, shape=square+disk-hole1-hole2, scale=1.6)
f.rotate(angle=pi/10, axis=(1,0,0), origin=(0,0,0))
if pages.pause(): return
E.end = 1
L2 = makelabel(0,-2, centered=True)
L2.text = """
Make a 2D shape with easy-to-use tools that are provided.
"""
if pages.pause(): return
L2.text = "Then extrude this 2D shape along a path."
curve(frame=f, pos=path, color=color.blue)
if pages.pause(): return
for i in range(1,len(E.pos)):
rate(20)
E.end = i
L2.pos = (0,-9)
pages.jumpenabled = True
pages.showpages()
L2.text = """
Rotate the object to examine this extrusion.
Throughout this overview, click or press a key to proceed,
or click on a page number to jump to any page.
"""
if not pages.spin(f, (0,0,0)): pages.page += 1
#-------------------------------------------------------------------------
def contours():
L1 = makelabel(-10.5,11.7)
L1.text = """
The first step in making an extrusion
is to create a 2D shape to extrude.
We specify a contour \n(a closed path of 2D points):
"""
axes = curve(pos=[(0,13.5), (0,8), (5,8)])
xaxis = makelabel(axes.x[0], axes.y[0])
xaxis.text = " y"
yaxis = makelabel(axes.x[2], axes.y[2])
yaxis.text = " x"
if pages.pause(): return
if drawcontour((0,8), contour1, color.blue): return
if pages.pause(): return
L1.text = "We'll"+' refer to this contour as "c1".'
if pages.pause(): return
L2 = makelabel(2,12)
L2.text = 'Specify another contour "c2".'
if drawcontour((0,8), contour2, color.orange): return
if pages.pause(): return
L3 = makelabel(1.5,6)
L3.text = 'Specify another\ncontour "c3".'
if drawcontour((0,8), contour3, (0,.5,0)): return
if pages.pause(): return
lab1 = makelabel(-10,.5)
lab1.text = """
We can make these contours using the Polygon function, by specifying
lists of 2D points in the xy plane (or choose from a library of shapes):
c1 = Polygon( [ (0,-5), (-3,3), (3,3) ] ) # 3 points for lower triangle
c2 = Polygon( [ (-2,2.5), (0,5), (2,2.5) ] ) # upper triangle
c3 = Polygon( [ (-2,2), (2,2), (.5,-2), (-.5,-2) ] ) # the trapezoid
"""
if pages.pause(): return
L4 = makelabel(-10,-6)
L4.text = """
The Polygon module imported by VPython
makes it possible to add or subtract such
contours to make a compound 2D surface.
For example, c1+c2-c3 yields a 2D surface
with a hole:
"""
if pages.pause(): return
c1 = Polygon(contour1)
c2 = Polygon(contour2)
c3 = Polygon(contour3)
extrusion(pos=(4,-7,0), color=color.gray(.7), shape=c1+c2-c3)
if not pages.pause(): pages.page += 1
#-------------------------------------------------------------------------
def extrude():
c1 = Polygon(contour1)
c2 = Polygon(contour2)
c3 = Polygon(contour3)
f1 = frame(pos=(-6,6,0))
f1.rotate(axis=(1,0,0), angle=pi/15)
f1.rotate(axis=(0,1,0), angle=pi/80)
E1 = extrusion(frame=f1, pos=[(0,0,0), (0,0,-8)],
shape=c1+c2-c3, color=color.orange)
E1.scale = 0.8
L1 = makelabel(-10,12)
L1.text = """
The 2D shape created by "c1+c2-c3" can be extruded, like this:
extrusion(pos=[(0,0,0), (0,0,-8)], shape=c1+c2-c3, color=color.orange)
"""
if pages.pause(): return
points(frame=f1, pos=E1.pos, size=8, color=color.red)
curve(frame=f1, pos=E1.pos, color=color.blue)
L1b = makelabel(-3.5,6)
L1b.text = """
The pos attribute is like that of a curve object,
a list of points (or choose a path from a library).
The first point (0,0,0) is at the front, and
the second point (0,0,-8) is at the back.
These points are indicated here by red dots.
The xy positions in the shape are relative to
the pos locations. Usually the shape's center
should be near (x,y) = (0,0).
"""
if pages.pause(): return
L2 = makelabel(-10.5,-.5)
L2.text = """
Rotate the object to examine this multipoint extrusion, with points shown:
extrusion(pos=[(0,0,0),(-1.2,0,-2.9),(-4.1,0,-4.0),(-7.0,0,-2.7),(-8,0,-0.2)],
shape=c1+c2-c3, color=color.orange)
"""
f2 = frame(pos=(2,-8,0))
f2.rotate(axis=(1,0,0), angle=pi/30)
f2.rotate(axis=(0,1,0), angle=-pi/10)
E2 = extrusion(frame=f2, pos=[(0,0,0),(-1.2,0,-2.9),(-4.1,0,-4.0),(-7.0,0,-2.7),(-8,0,-0.2)],
shape=c1+c2-c3, color=color.orange)
E2.scale = 0.8
points(frame=f2, pos=E2.pos, size=8, color=color.red)
curve(frame=f2, pos=E2.pos, color=color.blue)
if not pages.spin(f2, (0,-8,0)): pages.page += 1
#-------------------------------------------------------------------------
def shapelibrary():
L1 = makelabel(-10,10)
L1.text = """
It can be tedious to create lists of xy points to make a shape, or
a list of points for the pos path along which the extrusion is made.
For that reason there is a library of ready-made shapes, and a
library of ready-made paths.
Rotate this extrusion of a triangle along a closed pentagonal path:
E = extrusion(pos=paths.pentagon(pos=(0,2.5,0), length=5),
shape=shapes.triangle(length=3), color=color.cyan)
"""
f = frame()
E = extrusion(frame=f, pos=paths.pentagon(pos=(0,2.5,0),length=5), shape=shapes.triangle(length=3),
color=color.cyan)
f.rotate(angle=pi/5, axis=(1,0,0), origin=(0,2.5,0))
if pages.spin(f, (0,2.5,0)): return
L2 = makelabel(-10,-3)
L2.text = """
The "paths" library contains useful paths that you can assign to "pos".
Here we have a closed pentagonal path whose center is at (0,2.5,0).
Each side is of length 5.
"""
if pages.spin(f, (0,2.5,0)): return
L3 = makelabel(-10,-6)
L3.text = """
The "shapes" library contains useful shapes that you can assign to "shape".
Here we have specifed a triangle of length 3 as the cross section.
See the detailed documentation for what paths and shapes are available.
"""
if pages.spin(f, (0,2.5,0)): return
L3 = makelabel(-10, -9)
L3.text = """
The paths library provides paths in the xz plane, as in the example above.
In the next section we'll show how to orient the path differently.
"""
if not pages.spin(f, (0,2.5,0)): pages.page += 1
#-------------------------------------------------------------------------
def pathorientation():
L1 = makelabel(-10,11)
L1.text = """
A shape object is a 2D object, and its coordinates are given in the xy plane.
Currently, the points provided by the paths library are also 2D and can most
usefully be thought of as being created in the xy plane, like shapes:
"""
h = 2
x = curve(pos=[(-5,h+2,0), (5,h-2,0)], color=color.black)
theta = atan((x.y[1]-x.y[0])/(x.x[1]-x.x[0]))
y = curve(pos=[(0,h-2,0), (0,h+6,0)], color=color.black)
z = curve(pos=[(-2.5,h-2,0), (5,h+2+2,0)], color=color.black)
Lx = makelabel(4.5,h-2.3)
Lx.text = "x"
Ly = makelabel(.1,h+6)
Ly.text = "y"
Lz = makelabel(-2.2,h-2)
Lz.text = "z"
d = 3
f = frame(pos=(0,h))
base = curve(frame=f, x=[-d*cos(theta),d*cos(theta)], y=[-d*sin(theta),+d*sin(theta)],
color=color.red, radius=.1)
R = 5
c = curve(frame=f, pos=[base.pos[0], (0,R,0), base.pos[1]], color=color.red, radius=.1)
if pages.pause(): return
L2 = makelabel(-10,-3)
L2.text = """
After creation, the path in the xy plane is tipped backwards onto the xz plane,
with the top of the path in the -z direction.
"""
if pages.pause(): return
N = 50
dtheta = .288*pi/N
for i in range(N):
rate(N/2)
c.pos[1] = (R*sin(i*dtheta),R*cos(i*dtheta),0)
L3 = makelabel(-10,-6)
L3.text = """
Although the paths library produces paths in the xz plane, it is easy to
reorient the path by specifying the normal to the desired plane of the path.
For example the following statement would make a path perpendicular to the
x axis, by specifying that 'up' is in the (1,0,0) direction:
p = paths.triangle(length=2, up=(1,0,0))
"""
if pages.pause(): return
N = 50
dtheta = .39*pi/N
for i in range(N):
rate(N/2)
base.pos = [(-d*cos(theta-i*dtheta),-d*sin(theta-i*dtheta)),(d*cos(theta-i*dtheta),d*sin(theta-i*dtheta))]
c.pos[0] = base.pos[0]
c.pos[2] = base.pos[1]
arr = arrow(pos=(1.5,h+1.5), axis=3*norm(x.pos[1]-x.pos[0]), color=color.green)
Larr = makelabel(arr.x+arr.axis.x+.1,arr.y+arr.axis.y)
Larr.text = "(1,0,0)"
L4 = makelabel(-10,-10)
L4.text = """
For more information, see the detailed documentation.
"""
if not pages.pause(): pages.page += 1
#-------------------------------------------------------------------------
def scaling():
L1 = makelabel(-10,12)
L1.text = """
The shape that is the cross section of the extrusion object can be scaled
in x or y, all along the path specified by the pos points.
Here is an extrusion with varying scale factors. Rotate the object.
"""
L2 = makelabel(-10,-5)
L2.text = """
r = shapes.rectangle(width=10) # a 10 by 10 square
h = shapes.circle(radius=4)
E = extrusion(pos=[(0,4,4), (0,4,-4)], shape=r-h, color=color.red,
scale=[(1.5,1.0), (0.5,0.3)])
At the first point (0,4,4) the xscale is 1.5 and the y scale is 1.0.
At the second point (0,4,-4) the xscale is 0.5 and the y scale is 0.3.
"""
r = shapes.rectangle(width=10)
h = shapes.circle(radius=3)
f = frame()
E = extrusion(frame=f, pos=[(0,4,4), (0,4,-4)], shape=r-h, color=color.red,
scale=[(1.5,1), (0.5,0.3)])
f.rotate(angle=-pi/6, axis=(0,1,0), origin=(0,4,0))
if pages.spin(f, (0,0,0)): return
L3 = makelabel(-10,-10)
L3.text = """
The same effect could have been achieved with xscale=[1.5,0.5] and
yscale=[1.0,0.3]; you can scale x and y separately. Note that the
circle has been squashed into an ellipse.
If you want to set the same scale factor for all points along the path,
just say scale=2 (scales both x and y), or xscale=0.7, or yscale=1.3.
"""
if not pages.spin(f, (0,0,0)): pages.page += 1
#-------------------------------------------------------------------------
def twisting():
L1 = makelabel(-10,12)
L1.text = """
You can also twist along the path. Here is an example you can rotate:
extrusion(pos=paths.circle(radius=8, np=400), twist=2*pi/200,
shape=shapes.rectangle(width=3, height=1.5), color=color.green)
"""
f = frame()
E = extrusion(frame=f, pos=paths.circle(pos=(0,2,0), radius=7, np=400), twist=2*pi/200,
shape=shapes.rectangle(width=3, height=1.5), color=color.green)
f.rotate(angle=pi/6, axis=(1,0,0), origin=(0,2,0))
if pages.spin(f, (0,2,0)): return
L2 = makelabel(-10,-9)
L2.text = """
We've chosen a circular path made of 400 points (np=400), and we've
imposed a twist of 2*pi/200 radians from one point to the next along
the path. There are two full twists around the circle.
The twist attribute is actually an array with as many elements as pos.
Setting twist=2*pi/200 sets all elements of the array to 2*pi/200, so that
the twist from one point to the next is 2*pi/200 all along the path.
"""
if not pages.spin(f, (0,2,0)): pages.page += 1
#-------------------------------------------------------------------------
def dynamic():
L1 = makelabel(-10,8)
L1.text = """
You can dynamically change the extrusion parameters, with dramatic results.
Here the path, twist, xscale, and up are all being changed simultaneously.
"""
square = shapes.rectangle(width=4)
hole1 = shapes.circle(pos=(.7,.7), radius=.7)
hole2 = Polygon([(-1.2,0.8), (1.6,-1.5), (-1.2,-1.5)])
disk = shapes.circle(pos=(0,2), radius=1)
R = 6
dtheta = pi/20
arc = arange(.3,3.2*pi/4,dtheta)
f = frame()
E = extrusion(frame=f, x=R*cos(arc), y=0, z=-R*sin(arc),
color=(0.904,0.693,0.595), material=materials.plastic,
shape=square+disk-hole1-hole2, scale=1.6)
if pages.spin(E, (0,0,0), True): return
L2 = makelabel(-10,-8)
L2.text = """
This works because the 3D rendering of an extrusion object is quite fast.
"""
if not pages.spin(E, (0,0,0), True): pages.page += 1
#-------------------------------------------------------------------------
def miscellaneous():
L1 = makelabel(-10, 1)
L1.text = """
Here are additional attributes of the extrusion object.
See the detailed documentation for more information.
initial_twist
The first element of the twist array is ignored. If you need to twist
the initial face, set initial_twist. Alternatively, you could change
the "up" attribute (see documentation on the box object).
start, end
Choose which point along the pos curve to begin the display, and at
which point along the pos curve to end the display. Points before
start or after end are not shown on the screen. The default values
are start = 0 (pos[0]) and end = -1 (pos[-1] is the last point).
show_start_face, show_end_face
These are normally True. If you don't want a face at location start
or end to be shown, set the corresponding attribute to False. This
exposes the interior of the extrusion.
first_normal, last_normal
These read-only attributes give you the normals to the first (start=0)
and last faces (end=-1), whether or not these faces are actually shown;
these may be useful if you are joining an extrusion to another object.
append
There is an append option similar to that of the curve object.
smooth
By default, normals to the surfaces are averaged if their dot products
(the cosine of the angle between them) are greater or equal to 0.95,
which corresponds to an angular difference of 18 degrees. The effect
is to smooth away sharp breaks between two surfaces whose normals
don't differ by much. Setting smooth=0.9 will smooth adjoining surfaces
whose orientation differs by 53 degrees, a much looser criterion.
"""
if not pages.pause(): pages.page += 1
#-------------------------------------------------------------------------
def composites():
L1 = makelabel(-10,12)
L1.text = """
It can be useful to make composites from two or more extrusion objects.
Suppose you want a straight hole drilled through a tapered solid. Rotate
these two extrusions, one tapered (with tapered hole), the other not:
"""
fall = frame()
f1 = frame(frame=fall, pos=(-3,5,0))
E1 = extrusion(frame=f1, pos=[(0,0,4), (0,0,-4)], shape=shapes.rectangle(width=7)-shapes.circle(radius=1.5),
color=color.red)
E1.scale[1] = .5
cylinder(frame=f1, pos=(0,0,5), radius=0.5, axis=(0,0,-10), color=color.cyan)
f2 = frame(frame=fall, pos=(3,5,0))
E2 = extrusion(frame=f2, pos=E1.pos, shape=shapes.circle(radius=1.55)-shapes.circle(radius=0.7), color=E1.color)
## E2 = extrusion(frame=f2, pos=E1.pos, shape=shapes.circle(radius=1.5)-shapes.circle(radius=1.0), color=color.yellow)
## E2.scale[1] = 0.5
if pages.spin(fall, fall.pos): return
L2 = makelabel(-10,-6)
L2.text = """
Next we'll place these two extrusions in the same place.
"""
if pages.spin(fall, fall.pos): return
f1.pos = f2.pos = (0,5,0)
L2.text = "Rotate and observe a tapered solid with a straight hole."
if not pages.spin(fall, fall.pos): pages.page += 1
#-------------------------------------------------------------------------
def composites2():
L1 = makelabel(-10,12)
L1.text = """
Another use for composite extrusions is to specify different colors.
Here is a tapered hollow yellow cylinder and a tapered red solid.
"""
fall = frame()
f1 = frame(frame=fall, pos=(-3,5,0))
E1 = extrusion(frame=f1, pos=[(0,0,4), (0,0,-4)], shape=shapes.rectangle(width=7)-shapes.circle(radius=1.5),
color=color.red)
E1.scale[1] = .5
cylinder(frame=f1, pos=(0,0,5), radius=0.5, axis=(0,0,-10), color=color.cyan)
f2 = frame(frame=fall, pos=(3,5,0))
E2 = extrusion(frame=f2, pos=E1.pos, shape=shapes.circle(radius=1.5)-shapes.circle(radius=1.0), color=color.yellow)
E2.scale[1] = 0.5
if pages.spin(fall, fall.pos): return
L2 = makelabel(-10,-6)
L2.text = """
Next we'll place these two extrusions in the same place.
"""
if pages.spin(fall, fall.pos): return
f1.pos = f2.pos = (0,5,0)
L2.text = "Rotate and observe the composite of red solid and yellow insert."
if not pages.spin(fall, fall.pos): pages.page += 1
#-------------------------------------------------------------------------
def pathologies():
L1 = makelabel(-10,10)
L1.text = """
A sharp bend in the path can cause a later segment to overlap an earlier
segment. Consider the following two cases. Rotate the objects to see the
strange behavior of the extrusion on the right. The bend is so sharp that
the second segment intersects the first.
"""
fall = frame(pos=(0,1,0))
f1 = frame(frame=fall, pos=(8,0,0))
E1 = extrusion(frame=f1, pos=[(-15,0,0), (-15,3,0), (-15,3,0), (-11,1,0)], shape=shapes.rectangle(width=3,height=2),
color=[color.red, color.red, color.cyan, color.cyan])
curve(frame=f1, pos=E1.pos+vector(0,0,1), radius=0.1, color=color.yellow)
f2 = frame(frame=fall, pos=(18,0,0))
E2 = extrusion(frame=f2, pos=[(-15,0,0), (-15,3,0), (-15,3,0), (-11,-2,0)], shape=shapes.rectangle(width=3,height=2),
color=[color.red, color.red, color.cyan, color.cyan])
curve(frame=f2, pos=E2.pos+vector(0,0,1), radius=0.1, color=color.yellow)
fall.rotate(angle=-pi/4, axis=(1,0,0), origin=(0,0,0))
if pages.spin(fall, fall.pos): return
L2 = makelabel(-10,-6)
L2.text = """
Evidently it is important not to create very sharp bends in wide extrusions.
"""
if pages.spin(fall, fall.pos): return
L3 = makelabel(-10,-8)
L3.text = """
This is the end of the overview. See the detailed VPython documentation for
more details.
"""
if not pages.pause(): pages.page = 0
#-------------------------------------------------------------------------
pages = main(12)
startpage = 1
pages.page = startpage
if startpage != 1:
pages.jumpenabled = True
pages.showpages()
while True:
if pages.page == 1:
pages.jump(1)
intro()
elif pages.page == 2:
pages.jump(2)
contours()
elif pages.page == 3:
pages.jump(3)
extrude()
elif pages.page == 4:
pages.jump(4)
shapelibrary()
elif pages.page == 5:
pages.jump(5)
pathorientation()
elif pages.page == 6:
pages.jump(6)
scaling()
elif pages.page == 7:
pages.jump(7)
twisting()
elif pages.page == 8:
pages.jump(8)
dynamic()
elif pages.page == 9:
pages.jump(9)
miscellaneous()
elif pages.page == 10:
pages.jump(10)
composites()
elif pages.page == 11:
pages.jump(11)
composites2()
elif pages.page == 12:
pages.jump(12)
pathologies()
else:
pages.page += 1