-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathproofmode.v
251 lines (222 loc) · 9.55 KB
/
proofmode.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
From iris.proofmode Require Import coq_tactics reduction.
From iris.proofmode Require Export tactics.
From iris.program_logic Require Import atomic.
From iris_simp_lang Require Import tactics class_instances primitive_laws notation.
From iris.prelude Require Import options.
(*|
This is a heavily stripped-down version of HeapLang's proofmode support. To make
any program proofs reasonable we do need to implement `wp_pure` and `wp_bind`,
and as a demo of the implementation we also implement `wp_load` in the
reflective style typical in the IPM. `wp_pure` is the basis for a number of
tactics like `wp_rec` and `wp_let` and such, while `wp_bind` is what powers
`wp_apply`.
|*)
Lemma tac_wp_expr_eval `{!simpGS Σ} Δ s E Φ e e' :
(∀ (e'':=e'), e = e'') →
envs_entails Δ (WP e' @ s; E {{ Φ }}) → envs_entails Δ (WP e @ s; E {{ Φ }}).
Proof. by intros ->. Qed.
Tactic Notation "wp_expr_eval" tactic3(t) :=
iStartProof;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
notypeclasses refine (tac_wp_expr_eval _ _ _ _ e _ _ _);
[let x := fresh in intros x; t; unfold x; notypeclasses refine eq_refl|]
| _ => fail "wp_expr_eval: not a 'wp'"
end.
Ltac wp_expr_simpl := wp_expr_eval simpl.
Lemma tac_wp_pure `{!simpGS Σ} Δ Δ' s E K e1 e2 φ n Φ :
PureExec φ n e1 e2 →
φ →
MaybeIntoLaterNEnvs n Δ Δ' →
envs_entails Δ' (WP (fill K e2) @ s; E {{ Φ }}) →
envs_entails Δ (WP (fill K e1) @ s; E {{ Φ }}).
Proof.
rewrite envs_entails_unseal=> ??? HΔ'. rewrite into_laterN_env_sound /=.
(* We want [pure_exec_fill] to be available to TC search locally. *)
pose proof @pure_exec_fill.
rewrite HΔ' -lifting.wp_pure_step_later //.
iIntros "Hwp !> _" => //.
Qed.
Lemma tac_wp_value_nofupd `{!simpGS Σ} Δ s E Φ v :
envs_entails Δ (Φ v) → envs_entails Δ (WP (Val v) @ s; E {{ Φ }}).
Proof. rewrite envs_entails_unseal=> ->. by apply wp_value. Qed.
Lemma tac_wp_value `{!simpGS Σ} Δ s E (Φ : val → iPropI Σ) v :
envs_entails Δ (|={E}=> Φ v) → envs_entails Δ (WP (Val v) @ s; E {{ Φ }}).
Proof. rewrite envs_entails_unseal=> ->. by rewrite wp_value_fupd. Qed.
(** Simplify the goal if it is [WP] of a value.
If the postcondition already allows a fupd, do not add a second one.
But otherwise, *do* add a fupd. This ensures that all the lemmas applied
here are bidirectional, so we never will make a goal unprovable. *)
Ltac wp_value_head :=
lazymatch goal with
| |- envs_entails _ (wp ?s ?E (Val _) (λ _, fupd ?E _ _)) =>
eapply tac_wp_value_nofupd
| |- envs_entails _ (wp ?s ?E (Val _) (λ _, wp _ ?E _ _)) =>
eapply tac_wp_value_nofupd
| |- envs_entails _ (wp ?s ?E (Val _) _) =>
eapply tac_wp_value
end.
Ltac wp_finish :=
wp_expr_simpl; (* simplify occurences of subst/fill *)
try wp_value_head; (* in case we have reached a value, get rid of the WP *)
pm_prettify. (* prettify ▷s caused by [MaybeIntoLaterNEnvs] and
λs caused by wp_value *)
Ltac solve_vals_compare_safe :=
(* The first branch is for when we have [vals_compare_safe] in the context.
The other two branches are for when either one of the branches reduces to
[True] or we have it in the context. *)
fast_done || (left; fast_done) || (right; fast_done).
(** The argument [efoc] can be used to specify the construct that should be
reduced. For example, you can write [wp_pure (EIf _ _ _)], which will search
for an [EIf _ _ _] in the expression, and reduce it.
The use of [open_constr] in this tactic is essential. It will convert all holes
(i.e. [_]s) into evars, that later get unified when an occurences is found
(see [unify e' efoc] in the code below). *)
Tactic Notation "wp_pure" open_constr(efoc) :=
iStartProof;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
let e := eval simpl in e in
reshape_expr e ltac:(fun K e' =>
unify e' efoc;
eapply (tac_wp_pure _ _ _ _ K e');
[tc_solve (* PureExec *)
|try solve_vals_compare_safe (* The pure condition for PureExec --
handles trivial goals, including [vals_compare_safe] *)
|tc_solve (* IntoLaters *)
|wp_finish (* new goal *)
])
|| fail "wp_pure: cannot find" efoc "in" e "or" efoc "is not a redex"
| _ => fail "wp_pure: not a 'wp'"
end.
Ltac wp_pures :=
iStartProof;
first [ (* The `;[]` makes sure that no side-condition magically spawns. *)
progress repeat (wp_pure _; [])
| wp_finish (* In case wp_pure never ran, make sure we do the usual cleanup. *)
].
(** Unlike [wp_pures], the tactics [wp_rec] and [wp_lam] should also reduce
lambdas/recs that are hidden behind a definition, i.e. they should use
[AsRecV_recv] as a proper instance instead of a [Hint Extern].
We achieve this by putting [AsRecV_recv] in the current environment so that it
can be used as an instance by the typeclass resolution system. We then perform
the reduction, and finally we clear this new hypothesis. *)
Tactic Notation "wp_rec" :=
let H := fresh in
pose proof (H := AsRecV_recv);
wp_pure (App _ _);
clear H.
Tactic Notation "wp_if" := wp_pure (If _ _ _).
Tactic Notation "wp_if_true" := wp_pure (If (LitV (LitBool true)) _ _).
Tactic Notation "wp_if_false" := wp_pure (If (LitV (LitBool false)) _ _).
Tactic Notation "wp_unop" := wp_pure (UnOp _ _).
Tactic Notation "wp_binop" := wp_pure (BinOp _ _ _).
Tactic Notation "wp_op" := wp_unop || wp_binop.
Tactic Notation "wp_lam" := wp_rec.
Tactic Notation "wp_let" := wp_pure (Rec BAnon (BNamed _) _); wp_lam.
Tactic Notation "wp_seq" := wp_pure (Rec BAnon BAnon _); wp_lam.
Tactic Notation "wp_proj" := wp_pure (Fst _) || wp_pure (Snd _).
Tactic Notation "wp_pair" := wp_pure (Pair _ _).
Tactic Notation "wp_closure" := wp_pure (Rec _ _ _).
Lemma tac_wp_bind `{!simpGS Σ} K Δ s E Φ e f :
f = (λ e, fill K e) → (* as an eta expanded hypothesis so that we can `simpl` it *)
envs_entails Δ (WP e @ s; E {{ v, WP f (Val v) @ s; E {{ Φ }} }})%I →
envs_entails Δ (WP fill K e @ s; E {{ Φ }}).
Proof. rewrite envs_entails_unseal=> -> ->. by apply: wp_bind. Qed.
Ltac wp_bind_core K :=
lazymatch eval hnf in K with
| [] => idtac
| _ => eapply (tac_wp_bind K); [simpl; reflexivity|reduction.pm_prettify]
end.
Tactic Notation "wp_bind" open_constr(efoc) :=
iStartProof;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
first [ reshape_expr e ltac:(fun K e' => unify e' efoc; wp_bind_core K)
| fail 1 "wp_bind: cannot find" efoc "in" e ]
| _ => fail "wp_bind: not a 'wp'"
end.
(*|
=====================
Convenience tactics
=====================
`wp_load` is just a shorthand for using the `wp_load` lemma.
|*)
(** Heap tactics *)
Section heap.
Context `{!simpGS Σ}.
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val → iProp Σ.
Implicit Types Δ : envs (uPredI (iResUR Σ)).
Implicit Types (l: loc) (v : val) (z : Z).
Lemma tac_wp_load Δ Δ' s E i K b (l: loc) v Φ :
MaybeIntoLaterNEnvs 1 Δ Δ' →
envs_lookup i Δ' = Some (b, l ↦ v)%I →
envs_entails Δ' (WP fill K (Val v) @ s; E {{ Φ }}) →
envs_entails Δ (WP fill K (Load (LitV l)) @ s; E {{ Φ }}).
Proof.
rewrite envs_entails_unseal=> ?? Hi.
rewrite into_laterN_env_sound /=.
iIntros "Henv".
iDestruct (envs_lookup_split with "Henv") as "[Hl Henv]"; first by eauto.
iApply wp_bind.
destruct b; simpl.
- iDestruct "Hl" as ">#Hl".
iApply (wp_load with "Hl"). iIntros "!> _".
iApply Hi. iApply ("Henv" with "Hl").
- iDestruct "Hl" as ">Hl".
iApply (wp_load with "Hl"). iIntros "!> Hl".
iApply Hi. iApply ("Henv" with "Hl").
Qed.
End heap.
(** Evaluate [lem] to a hypothesis [H] that can be applied, and then run
[wp_bind K; tac H] for every possible evaluation context. [tac] can do
[iApplyHyp H] to actually apply the hypothesis. TC resolution of [lem] premises
happens *after* [tac H] got executed. *)
Tactic Notation "wp_apply_core" open_constr(lem) tactic3(tac) :=
wp_pures;
iPoseProofCore lem as false (fun H =>
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
reshape_expr e ltac:(fun K e' =>
wp_bind_core K; tac H) ||
lazymatch iTypeOf H with
| Some (_,?P) => fail "wp_apply: cannot apply" P
end
| _ => fail "wp_apply: not a 'wp'"
end).
Tactic Notation "wp_apply" open_constr(lem) :=
wp_apply_core lem (fun H => iApplyHyp H; try iNext; try wp_expr_simpl).
Tactic Notation "wp_load" :=
let solve_pointsto _ :=
let l := match goal with |- _ = Some (_, (?l ↦ _)%I) => l end in
iAssumptionCore || fail "wp_load: cannot find" l "↦ ?" in
wp_pures;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_load _ _ _ _ _ K))
|fail 1 "wp_load: cannot find 'Load' in" e];
[tc_solve
|solve_pointsto ()
|wp_finish]
| _ => fail "wp_load: not a 'wp'"
end.
(* These tactics are not implemented reflectively out of laziness, but they do
get the job done. Don't be afraid to implement helpers like this, though! They
can be slightly buggier, slower, and give worse error messages but it's great
for prototyping. *)
Tactic Notation "wp_alloc" ident(l) "as" constr(H) :=
wp_apply (wp_alloc with "[//]"); iIntros (l) H.
Tactic Notation "wp_store" :=
wp_pures;
wp_bind (Store _ _);
lazymatch goal with
| |- envs_entails ?Δ (wp ?s ?E (Store (Val (LitV (LitInt ?l))) _) ?Q) =>
lazymatch Δ with
| context[Esnoc _ ?i (l ↦ _)%I] =>
wp_apply (wp_store with i); iIntros i
| _ => fail "wp_store: could not find" l "↦ v"
end
| _ => fail "wp_store: not a 'wp'"
end.