-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathheap_lib.v
119 lines (99 loc) · 4.11 KB
/
heap_lib.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
From stdpp Require Import gmap.
From iris.base_logic.lib Require Export own.
From iris.proofmode Require Import tactics.
From iris_simp_lang Require Import heap_ra.
From iris.prelude Require Import options.
(*|
This file is a "ghost state" library on top of heap_ra.
It defines Iris propositions for owning the ghost state that will track the
simp_lang heap and the points-to facts that will give the right to read and write
to it. These are built using the general Iris mechanisms for user-defined ghost
state. Wrapping them in a library like this makes the API to the ghost state
easier to use, since it is now stated in terms of updates in the Iris logic
rather than theorems about the RA (so for example these theorems can be used
directly in the IPM).
|*)
Class heap_mapGpreS (L V : Type) (Σ : gFunctors) `{Countable L} := {
heap_mapGpreS_inG :: inG Σ (heap_mapR L V);
}.
Class heap_mapGS (L V : Type) (Σ : gFunctors) `{Countable L} := GenHeapGS {
heap_map_inG :: heap_mapGpreS L V Σ;
heap_map_name : gname;
}.
Global Arguments GenHeapGS L V Σ {_ _ _} _ : assert.
Global Arguments heap_map_name {L V Σ _ _} _ : assert.
Definition heap_mapΣ (L V : Type) `{Countable L} : gFunctors := #[
GFunctor (heap_mapR L V)
].
Global Instance subG_heap_mapGpreS {Σ L V} `{Countable L} :
subG (heap_mapΣ L V) Σ → heap_mapGpreS L V Σ.
Proof. solve_inG. Qed.
Section definitions.
Context `{Countable L, hG : !heap_mapGS L V Σ}.
(*|
These two definitions are the key idea behind the state interpretation.
`heap_map_interp` is the authoritative element of this RA, which will be the
state interpretation of `σ`, while `pointsto_def` has fragments that live outside
the state interpretation and are owned by threads. `l ↦ v` will be notation for
`pointsto`, with a full 1 fraction.
|*)
Definition heap_map_interp (σ : gmap L V) : iProp Σ :=
own (heap_map_name hG) (Auth (σ : gmap L V)).
Definition pointsto_def (l : L) (v: V) : iProp Σ :=
own (heap_map_name hG) (Frag {[l := v]}).
Definition pointsto_aux : seal (@pointsto_def). Proof. by eexists. Qed.
Definition pointsto := pointsto_aux.(unseal).
Definition pointsto_eq : @pointsto = @pointsto_def := pointsto_aux.(seal_eq).
End definitions.
Notation "l ↦ v" := (pointsto l v)
(at level 20, format "l ↦ v") : bi_scope.
Section heap_map.
Context {L V} `{Countable L, !heap_mapGS L V Σ}.
Implicit Types (P Q : iProp Σ).
Implicit Types (Φ : V → iProp Σ).
Implicit Types (σ : gmap L V) (l : L) (v : V).
(** General properties of pointsto *)
Global Instance pointsto_timeless l v : Timeless (l ↦ v).
Proof. rewrite pointsto_eq. apply _. Qed.
Lemma pointsto_conflict l v1 v2 : l ↦ v1 -∗ l ↦ v2 -∗ False.
Proof.
rewrite pointsto_eq. iIntros "H1 H2".
iDestruct (own_valid_2 with "H1 H2") as %Hdisj%heap_map_frag_frag_valid.
apply map_disjoint_dom in Hdisj.
set_solver.
Qed.
(** Update lemmas *)
Lemma heap_map_alloc σ l v :
σ !! l = None →
heap_map_interp σ ==∗ heap_map_interp (<[l:=v]>σ) ∗ l ↦ v.
Proof.
iIntros (Hσl). rewrite /heap_map_interp pointsto_eq /pointsto_def /=.
iIntros "Hσ".
iMod (own_update with "Hσ") as "[Hσ Hl]".
{ eapply (heap_map_alloc_update _ l); done. }
iModIntro. iFrame.
Qed.
Lemma heap_map_valid σ l v : heap_map_interp σ -∗ l ↦ v -∗ ⌜σ !! l = Some v⌝.
Proof.
iIntros "Hσ Hl".
rewrite /heap_map_interp pointsto_eq /pointsto_def.
by iDestruct (own_valid_2 with "Hσ Hl") as %Hsub%heap_map_singleton_valid.
Qed.
Lemma heap_map_update σ l v1 v2 :
heap_map_interp σ -∗ l ↦ v1 ==∗ heap_map_interp (<[l:=v2]>σ) ∗ l ↦ v2.
Proof.
iIntros "Hσ Hl".
rewrite /heap_map_interp pointsto_eq /pointsto_def.
iMod (own_update_2 with "Hσ Hl") as "[Hσ Hl]".
{ eapply heap_map_modify_update. }
iModIntro. iFrame.
Qed.
End heap_map.
Lemma heap_map_init `{Countable L, !heap_mapGpreS L V Σ} σ :
⊢ |==> ∃ _ : heap_mapGS L V Σ, heap_map_interp σ.
Proof.
iMod (own_alloc (Auth (σ : gmap L V))) as (γ) "Hσ".
{ exact: heap_map_auth_valid. }
iExists (GenHeapGS _ _ _ γ).
done.
Qed.