-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPhotometry_PSF.py
executable file
·504 lines (402 loc) · 16.4 KB
/
Photometry_PSF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
#--------------------------------------------------------------
#Author: Lisa Dang
#Created: 2016-11-09 1:21 AM EST
#Last Modified:
#Title: PSF Fitting
#--------------------------------------------------------------
import numpy as np
from scipy import interpolate
from scipy import stats as st
from scipy import optimize as opt
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.patches
from astropy.io import fits
from astropy.stats import sigma_clip
import glob
import csv
import time as tim
import os, sys
import warnings
def get_fnames(directory, AOR_snip, ch):
'''
Find paths to all the fits files.
Parameters
----------
directory : string object
Path to the directory containing all the Spitzer data.
AOR_snip : string object
Common first characters of data directory eg. 'r579'
ch : string objects
Channel used for the observation eg. 'ch1' for channel 1
Returns
-------
fname : list
List of paths to all bcd.fits files.
len(fnames): int
Number of fits file found.
'''
lst = os.listdir(directory)
AOR_list = [k for k in lst if AOR_snip in k]
#AOR_list = np.delete(AOR_list, [0, 4]) # used to ignore calibration data sets
fnames = []
for i in range(len(AOR_list)):
path = directory + '/' + AOR_list[i] + '/' + ch +'/bcd'
fnames.extend([filename for filename in glob.glob(os.path.join(path, '*bcd.fits'))])
fnames.sort()
return fnames, len(fnames)
def get_time(hdu_list, time):
'''
Gets the time stamp for each image.
Parameters
----------
hdu_list :
content of fits file.
time : 1D array
Time array to append new time stamps to.
Returns
-------
time : 1D array
Time array with new values appended.
'''
h, w, l = hdu_list[0].data.shape
t = np.linspace(hdu_list[0].header['AINTBEG'] + hdu_list[0].header['EXPTIME']/2, hdu_list[0].header['ATIMEEND'] - hdu_list[0].header['EXPTIME']/2, h)
sec2day = 1.0/(3600.0*24.0)
t = sec2day*t
time.extend(t)
return time
def sigma_clipping(image_data, filenb = 0 , fname = ['not provided'], tossed = 0, badframetable = [], bounds = (11, 19, 11, 19)):
'''
Sigma clips bad pixels and mask entire frame if the sigma clipped
pixel is too close to the target.
Parameters
----------
image_data: 3D array
Data cube of images (2D arrays of pixel values).
filenb : int (optional)
Index of current file in the 'fname' list (list of names of files)
to keep track of the files that were tossed out. Default is 0.
fname : list (optional)
list (list of names of files) to keep track of the files that were
tossed out.
tossed : int (optional)
Total number of image tossed out. Default is 0 if none provided.
badframetable: list (optional)
List of file names and frame number of images tossed out from 'fname'.
bounds : tuple (optional)
Bounds of box around the target. Default is (11, 19 ,11, 19).
Returns
-------
sig_clipped_data: 3D array
Data cube of sigma clipped images (2D arrays of pixel values).
tossed : int
Updated total number of image tossed out.
badframetable: list
Updated list of file names and frame number of images tossed
out from 'fname'.
'''
lbx, ubx, lby, uby = bounds
h, w, l = image_data.shape
# mask invalids
image_data2 = np.ma.masked_invalid(image_data)
# make mask to mask entire bad frame
x = np.ones(shape = (w, l))
mask = np.ma.make_mask(x)
sig_clipped_data = sigma_clip(image_data2, sigma=4, iters=2, cenfunc=np.ma.median, axis = 0)
for i in range (h):
oldstar = image_data[i, lbx:ubx, lby:uby]
newstar = sig_clipped_data[i, lbx:ubx, lby:uby]
truth = newstar==oldstar
if(truth.sum() < truth.size):
sig_clipped_data[i,:,:] = np.ma.masked_array(sig_clipped_data[i,:,:], mask = mask)
badframetable.append([i,filenb,fname])
tossed += 1
return sig_clipped_data, tossed, badframetable
def bgsubtract(img_data, bg_err = [], bounds = (11, 19, 11, 19)):
'''
Measure the background level and subtracts the background from
each frame.
Parameters
----------
img_data : 3D array
Data cube of images (2D arrays of pixel values).
bg_err : 1D array (optional)
Array of uncertainties on background measurements for previous images.
Default if none given is an empty list
bounds : tuple (optional)
Bounds of box around the target to exclude from the background level
measurements. Default is (11, 19 ,11, 19).
Returns
-------
bgsub_data: 3D array
Data cube of sigma clipped images (2D arrays of pixel values).
bg_err : 1D array
Updated array of uncertainties on background measurements for previous
images.
'''
lbx, ubx, lby, uby = bounds
image_data = np.copy(img_data)
h, w, l = image_data.shape
x = np.zeros(shape = image_data.shape)
x[:, lbx:ubx,lby:uby] = 1
mask = np.ma.make_mask(x)
masked = np.ma.masked_array(image_data, mask = mask)
masked = np.reshape(masked, (h, w*l))
bg_med = np.reshape(np.ma.median(masked, axis=1), (h, 1, 1))
bgsub_data = image_data - bg_med
bg_err.extend(np.ma.std(masked, axis=1))
bgsub_data = np.ma.masked_invalid(bgsub_data)
return bgsub_data, bg_err
def oversampling(image_data, a = 2):
'''
First, substitutes all invalid/sigmaclipped pixel by interpolating the value.
Then oversamples the image.
Parameters
----------
image_data: 3D array
Data cube of images (2D arrays of pixel values).
a : int (optional)
Sampling factor, e.g. if a = 2, there will be twice as much data points in
the x and y axis. Default is 2. (Do not recommend larger than 2)
Returns
-------
image_over: 3D array
Data cube of oversampled images (2D arrays of pixel values).
'''
l, h, w = image_data.shape
gridx, gridy = np.mgrid[0:h:1/a, 0:w:1/a]
image_over = np.empty((l, h*a, w*a))
for i in range(l):
image_masked = np.ma.masked_invalid(image_data[i,:,:])
points = np.ma.nonzero(image_masked)
image_compre = np.ma.compressed(image_masked)
image_over[i,:,:] = interpolate.griddata(points, image_compre, (gridx, gridy), method = 'linear')
return image_over
def Gaussian2D(position, amp, xo, yo, sigx, sigy):
'''
Create a 2D Gaussian array.
Parameters
----------
position : 3D array
Meshgrids of x and y indices of pixels. position[:,:,0] = x and
position[:,:,1] = y.
amp : float
Amplitude of the 2D Gaussian.
xo : float
x value of the peak of the 2D Gaussian.
yo : float
y value of the peak of the 2D Gaussian.
sigx : float
Width of the 2D Gaussian along the x axis.
sigy : float
Width of the 2D Gaussian along the y axis.
Returns
-------
PSF.ravel(): 1D array
z values of the 2D Gaussian raveled.
'''
centroid = [yo, xo]
cov = [[sigy**2, 0],[0, sigx**2]]
rv = st.multivariate_normal(mean = centroid, cov = cov)
PSF = amp*(rv.pdf(position))
return PSF.ravel()
def imagefit(image_data, popt = [], pcov = [], tossed =0, scale = 1,
tbounds = (9, 20, 9, 20),
pinit = (18000, 15, 15, 2, 2),
ub = (25000, 15.3, 15.3, 5, 5),
lb = (3000, 14.6, 14.6, 0.3, 0.3)):
'''
CFit a 2D Gaussian on the image.
Parameters
----------
image_data: 3D array
Data cube of images (2D arrays of pixel values).
popt : 2D array (optional)
Array of optimized parameters to append to.
pcov : 3D array (optional)
Array of covariance matrix to append to.
tossed : int (optional)
Total number of image tossed out. Default is 0 if none provided. Default is 0.
scale : int (optional)
If the image is over sampled, scaling factor for centroid and bounds,
i.e, give centroid in terms of the pixel value of the initial image.
Default is 1.
bounds :
pinit :
ub :
lb :
Returns
-------
PSF.ravel(): 1D array
z values of the 2D Gaussian raveled.
'''
lbx, ubx, lby, uby = tbounds
lbx, ubx, lby, uby = lbx*scale, ubx*scale, lby*scale, uby*scale
l, h, w = image_data.shape
x, y = np.mgrid[lbx/scale:ubx/scale:1/scale, lby/scale:uby/scale:1/scale]
position = np.empty(x.shape + (2,))
position[:,:,0] = x
position[:,:,1] = y
popt_tmp = np.empty((l,len(pinit)))
pcov_tmp = np.empty((l,len(pinit), len(pinit)))
for i in range(l):
dataravel = image_data[i,lbx:ubx,lby:uby].ravel()
try:
popt_tmp[i,:], pcov_tmp[i,:,:] = opt.curve_fit(Gaussian2D, position, dataravel, p0=pinit, bounds = (lb,ub))
except RuntimeError:
print("Error - curve_fit failed")
popt_tmp[i,:] = np.nan
tossed += 1
popt = np.append(popt, popt_tmp, axis = 0)
pcov = np.append(pcov, pcov_tmp, axis = 0)
return popt, pcov, tossed
def binning_data(data, size):
'''
Median bin an array.
Parameters
----------
data : 1D array
Array of data to be binned.
size : int
Size of bins.
Returns
-------
binned_data: 1D array
Array of binned data.
binned_data: 1D array
Array of standard deviation for each entry in binned_data.
'''
data = np.ma.masked_invalid(data)
reshaped_data = data.reshape((len(data)/size, size))
binned_data = np.ma.median(reshaped_data, axis=1)
binned_data_std = np.std(reshaped_data, axis=1)
return binned_data, binned_data_std
def get_lightcurve(datapath, savepath, AOR_snip, channel, subarray,
save = True, save_full = '/ch2_datacube_full_AORs579.dat', bin_data = True,
bin_size = 64, save_bin = '/ch2_datacube_binned_AORs579.dat', plot = True,
plot_name= 'CoRoT-2b.pdf', oversamp = False, **kwargs):
'''
Given a directory, looks for data (bcd.fits files), opens them and performs photometry.
Parameters
----------
datapath : string object
Directory where the spitzer data is stored.
savepath : string object
Directory the outputs will be saved.
AORsnip : string objects
Common first characters of data directory eg. 'r579'
channel : string objects
Channel used for the observation eg. 'ch1' for channel 1
subarray : bool
True if observation were taken in subarray mode. False if
observation were taken in full-array mode.
save : bool (optional)
True if you want to save the outputs. Default is True.
save_full: string object (optional)
Filename of the full unbinned output data. Default is
'/ch2_datacube_full_AORs579.dat'.
bin_data : bool (optional)
True you want to get binned data. Default is True.
bin_size : int (optional)
If bin_data is True, the size of the bins. Default is 64.
save_bin : string object (optional)
Filename of the full binned output data. Default is
'/ch2_datacube_binned_AORs579.dat'.
plot : bool (optional)
True if you want to plot the time resolved lightcurve.
Default is True.
plot_name: string object (optional)
If plot and save is True, the filename of the plot to be
saved as. Default is True.
oversamp : bool (optional)
True if you want to oversample you image. Default is True.
**kwargs : dictionary
Argument passed onto other functions.
Raises
------
Error :
If Photometry method is not supported/recognized by this pipeline.
'''
# Ignore warning and starts timing
warnings.filterwarnings('ignore')
tic = tim.clock()
# get list of filenames and nb of files
fnames, nfiles = get_fnames(datapath, AOR_snip, channel)
# variables declaration
percent = 0 # to show progress while running the code
tossed = 0 # Keep tracks of number of frame discarded
badframetable = [] # list of filenames of the discarded frames
time = [] # time array
bg_err = [] # background flux error
popt = np.empty(shape = (0,5))
pcov = np.empty(shape = (0,5,5))
#xo = [] # centroid value along the x-axis
#yo = [] # centroid value along the y-axis
#xw = [] # PSF width along the x-axis
#yw = [] # PSF width along the y-axis
#aperture_sum = [] # flux obtained from aperture photometry
#aperture_sum_err = [] c# error on flux obtained from aperture photometry
#image_data_full=np.zeros((64*nfiles, 32, 32))
#factor = np.zeros(64*nfiles)
# data reduction & aperture photometry part
if (subarray == True):
for i in range(nfiles):
# open fits file
hdu_list = fits.open(fnames[i])
image_data0 = hdu_list[0].data
h, w, l = image_data0.shape
# get time
time = get_time(hdu_list, time)
# convert MJy/str to electron count
convfact = hdu_list[0].header['GAIN']*hdu_list[0].header['EXPTIME']/hdu_list[0].header['FLUXCONV']
image_data1 = convfact*image_data0
# sigma clip
fname = fnames[i]
image_data2, tossed, badframetable = sigma_clipping(image_data1, i ,fname[fname.find('ch2/bcd/')+8:], tossed=tossed, **kwargs)
# bg subtract
image_data3, bg_err = bgsubtract(image_data2, bg_err)
# oversampling & Photometry
if (oversamp == True):
image_data3 = np.ma.masked_invalid(oversampling(image_data3))
popt, pcov, tossed = imagefit(image_data3,popt, pcov, tossed, scale = 2)
else:
popt, pcov, tossed = imagefit(image_data3, popt, pcov, tossed)
print('Status:', i, 'out of', nfiles)
elif (subarray == False):
print('Sorry this part is undercontruction!')
if (bin_data == True):
binned_flux, binned_flux_std = binning_data(popt[:,0], bin_size)
binned_time, binned_time_std = binning_data(np.asarray(time), bin_size)
binned_xo, binned_xo_std = binning_data(popt[:,1], bin_size)
binned_yo, binned_yo_std = binning_data(popt[:,2], bin_size)
binned_xw, binned_xw_std = binning_data(popt[:,3], bin_size)
binned_yw, binned_yw_std = binning_data(popt[:,4], bin_size)
if (plot == True):
fig, axes = plt.subplots(nrows=3, ncols=1, sharex=True, figsize=(15,5))
fig.suptitle("CoRoT-2b", fontsize="x-large")
axes[0].plot(binned_time, binned_flux,'k+')
axes[0].set_ylabel("Stellar Flux (MJy/pixel)")
axes[1].plot(binned_time, binned_xo, '+')
axes[1].set_ylabel("$x_0$")
axes[2].plot(binned_time, binned_yo, 'r+')
axes[2].set_xlabel("Time since IRAC turn-on (days)")
axes[2].set_ylabel("$y_0$")
fig.subplots_adjust(hspace=0)
if (save == True):
pathplot = savepath + '/' + plot_name
fig.savefig(pathplot)
else :
plt.show()
if (save == True):
FULL_data = np.c_[popt.T, time]
FULL_head = 'Flux, x-centroid, y-centroid, x-PSF width, y-PSF width, time'
BINN_data = np.c_[binned_flux, binned_flux_std, binned_time, binned_time_std, binned_xo, binned_xo_std, binned_yo, binned_yo_std, binned_xw, binned_xw_std, binned_yw, binned_yw_std]
BINN_head = 'Flux, Flux std, Time, Time std, x-centroid, x-centroid std, y-centroid, y-centroid std, x-PSF width, x-PSF width std, y-PSF width, y-PSF width std'
pathFULL = savepath + save_full
pathBINN = savepath + save_bin
np.savetxt(pathFULL, FULL_data, header = FULL_head)
np.savetxt(pathBINN, BINN_data, header = BINN_head)
toc = tim.clock()
print('Number of discarded frames:', tossed)
print('Time:', toc-tic, 'seconds')
if __name__=='__main__': main()