-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
326 lines (278 loc) · 17.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# import comet_ml at the top of your file
from comet_ml import Experiment
import argparse
import torch
import numpy as np
from rcbf_sac.sac_cbf import RCBF_SAC
from rcbf_sac.replay_memory import ReplayMemory
from rcbf_sac.dynamics import DynamicsModel
from build_env import *
import os
from rcbf_sac.utils import prGreen, get_output_folder, prYellow
from rcbf_sac.evaluator import Evaluator
from rcbf_sac.generate_rollouts import generate_model_rollouts
def train(agent, env, dynamics_model, args, experiment=None):
# Memory
memory = ReplayMemory(args.replay_size, args.seed)
memory_model = ReplayMemory(args.replay_size, args.seed)
# Training Loop
total_numsteps = 0
updates = 0
if args.use_comp:
compensator_rollouts = []
comp_buffer_idx = 0
for i_episode in range(args.max_episodes):
episode_reward = 0
episode_cost = 0
episode_steps = 0
done = False
obs = env.reset()
# Saving rollout here to train compensator
if args.use_comp:
episode_rollout = dict()
episode_rollout['obs'] = np.zeros((0, env.observation_space.shape[0]))
episode_rollout['u_safe'] = np.zeros((0, env.action_space.shape[0]))
episode_rollout['u_comp'] = np.zeros((0, env.action_space.shape[0]))
while not done:
if episode_steps % 10 == 0:
prYellow('Episode {} - step {} - eps_rew {} - eps_cost {}'.format(i_episode, episode_steps, episode_reward, episode_cost))
state = dynamics_model.get_state(obs)
# Generate Model rollouts
if args.model_based and episode_steps % 5 == 0 and len(memory) > dynamics_model.max_history_count / 3:
memory_model = generate_model_rollouts(env, memory_model, memory, agent, dynamics_model,
k_horizon=args.k_horizon,
batch_size=min(len(memory), 5 * args.rollout_batch_size),
warmup=args.start_steps > total_numsteps)
# If using model-based RL then we only need to have enough data for the real portion of the replay buffer
if len(memory) + len(memory_model) * args.model_based > args.batch_size:
# Number of updates per step in environment
for i in range(args.updates_per_step):
# Update parameters of all the networks
if args.model_based:
# Pick the ratio of data to be sampled from the real vs model buffers
real_ratio = max(min(args.real_ratio, len(memory) / args.batch_size), 1 - len(memory_model) / args.batch_size)
# Update parameters of all the networks
critic_1_loss, critic_2_loss, policy_loss, ent_loss, alpha = agent.update_parameters(memory,
args.batch_size,
updates,
dynamics_model,
memory_model,
real_ratio)
else:
critic_1_loss, critic_2_loss, policy_loss, ent_loss, alpha = agent.update_parameters(memory,
args.batch_size,
updates,
dynamics_model)
if experiment:
experiment.log_metric('loss/critic_1', critic_1_loss, updates)
experiment.log_metric('loss/critic_2', critic_2_loss, step=updates)
experiment.log_metric('loss/policy', policy_loss, step=updates)
experiment.log_metric('loss/entropy_loss', ent_loss, step=updates)
experiment.log_metric('entropy_temperature/alpha', alpha, step=updates)
updates += 1
if args.use_comp:
action, action_comp, action_cbf = agent.select_action(obs, dynamics_model, warmup=args.start_steps > total_numsteps)
else:
action = agent.select_action(obs, dynamics_model, warmup=args.start_steps > total_numsteps) # Sample action from policy
next_obs, reward, done, info = env.step(action) # Step
if 'cost_exception' in info:
prYellow('Cost exception occured.')
episode_steps += 1
total_numsteps += 1
episode_reward += reward
episode_cost += info.get('cost', 0)
# Ignore the "done" signal if it comes from hitting the time horizon.
# (https://github.com/openai/spinningup/blob/master/spinup/algos/sac/sac.py)
mask = 1 if episode_steps == env.max_episode_steps else float(not done)
memory.push(obs, action, reward, next_obs, mask, t=episode_steps * env.dt, next_t=(episode_steps+1) * env.dt) # Append transition to memory
# Update state and store transition for GP model learning
next_state = dynamics_model.get_state(next_obs)
if episode_steps % 2 == 0 and i_episode < args.gp_max_episodes: # Stop learning the dynamics after a while to stabilize learning
# TODO: Clean up line below, specifically (t_batch)
dynamics_model.append_transition(state, action, next_state, t_batch=np.array([episode_steps*env.dt]))
# append comp rollout with step before updating
if args.use_comp:
episode_rollout['obs'] = np.vstack((episode_rollout['obs'], obs))
episode_rollout['u_safe'] = np.vstack((episode_rollout['u_safe'], action_cbf))
episode_rollout['u_comp'] = np.vstack((episode_rollout['u_comp'], action_comp))
obs = next_obs
# Train compensator
if args.use_comp and i_episode < args.comp_train_episodes:
if comp_buffer_idx < 50: # TODO: Turn the 50 into an arg
compensator_rollouts.append(episode_rollout)
else:
comp_buffer_idx[comp_buffer_idx] = episode_rollout
comp_buffer_idx = (comp_buffer_idx + 1) % 50
if i_episode % args.comp_update_episode == 0:
agent.update_parameters_compensator(compensator_rollouts)
# [optional] save intermediate model
if i_episode % int(args.max_episodes / 10) == 0:
agent.save_model(args.output)
dynamics_model.save_disturbance_models(args.output)
if experiment:
# Comet.ml logging
experiment.log_metric('reward/train', episode_reward, step=i_episode)
experiment.log_metric('cost/train', episode_cost, step=i_episode)
prGreen("Episode: {}, total numsteps: {}, episode steps: {}, reward: {}, cost: {}".format(i_episode, total_numsteps,
episode_steps,
round(episode_reward, 2), round(episode_cost, 2)))
# Evaluation
if i_episode % 5 == 0 and args.eval is True:
print('Size of replay buffers: real : {}, \t\t model : {}'.format(len(memory), len(memory_model)))
avg_reward = 0.
avg_cost = 0.
episodes = 5
for _ in range(episodes):
obs = env.reset()
episode_reward = 0
episode_cost = 0
done = False
while not done:
if args.use_comp:
action, _, _ = agent.select_action(obs, dynamics_model, evaluate=True)
else:
action = agent.select_action(obs, dynamics_model, evaluate=True) # Sample action from policy
next_obs, reward, done, info = env.step(action)
episode_reward += reward
episode_cost += info.get('cost', 0)
obs = next_obs
avg_reward += episode_reward
avg_cost += episode_cost
avg_reward /= episodes
avg_cost /= episodes
if experiment:
experiment.log_metric('avg_reward/test', avg_reward, step=i_episode)
experiment.log_metric('avg_cost/test', avg_cost, step=i_episode)
print("----------------------------------------")
print("Test Episodes: {}, Avg. Reward: {}, Avg. Cost: {}".format(episodes, round(avg_reward, 2), round(avg_cost, 2)))
print("----------------------------------------")
def test(agent, env, dynamics_model, evaluate, model_path, visualize=True, debug=False):
agent.load_weights(model_path)
dynamics_model.load_disturbance_models(model_path)
def policy(observation):
if args.use_comp:
action, action_comp, action_cbf = agent.select_action(observation, dynamics_model, evaluate=True)
else:
action = agent.select_action(observation, dynamics_model,evaluate=True)
return action
evaluate(env, policy, dynamics_model=dynamics_model, debug=debug, visualize=visualize, save=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='PyTorch Soft Actor-Critic Args')
# Environment Args
parser.add_argument('--env-name', default="Unicycle", help='Options is Unicycle')
# Comet ML
parser.add_argument('--log_comet', action='store_true', dest='log_comet', help="Whether to log data")
parser.add_argument('--comet_key', default='', help='Comet API key')
parser.add_argument('--comet_workspace', default='', help='Comet workspace')
# SAC Args
parser.add_argument('--mode', default='train', type=str, help='support option: train/test')
parser.add_argument('--visualize', action='store_true', dest='visualize', help='visualize env -only in available test mode')
parser.add_argument('--output', default='output', type=str, help='')
parser.add_argument('--policy', default="Gaussian",
help='Policy Type: Gaussian | Deterministic (default: Gaussian)')
parser.add_argument('--eval', type=bool, default=True,
help='Evaluates a policy a policy every 5 episode (default: True)')
parser.add_argument('--gamma', type=float, default=0.99, metavar='G',
help='discount factor for reward (default: 0.99)')
parser.add_argument('--tau', type=float, default=0.005, metavar='G',
help='target smoothing coefficient(τ) (default: 0.005)')
parser.add_argument('--lr', type=float, default=0.0003, metavar='G',
help='learning rate (default: 0.0003)')
parser.add_argument('--alpha', type=float, default=0.2, metavar='G',
help='Temperature parameter α determines the relative importance of the entropy\
term against the reward (default: 0.2)')
parser.add_argument('--automatic_entropy_tuning', type=bool, default=True, metavar='G',
help='Automatically adjust α (default: False)')
parser.add_argument('--seed', type=int, default=12345, metavar='N',
help='random seed (default: 12345)')
parser.add_argument('--batch_size', type=int, default=256, metavar='N',
help='batch size (default: 256)')
parser.add_argument('--max_episodes', type=int, default=200, metavar='N',
help='maximum number of episodes (default: 200)')
parser.add_argument('--hidden_size', type=int, default=256, metavar='N',
help='hidden size (default: 256)')
parser.add_argument('--updates_per_step', type=int, default=1, metavar='N',
help='model updates per simulator step (default: 1)')
parser.add_argument('--start_steps', type=int, default=5000, metavar='N',
help='Steps sampling random actions (default: 10000)')
parser.add_argument('--target_update_interval', type=int, default=1, metavar='N',
help='Value target update per no. of updates per step (default: 1)')
parser.add_argument('--replay_size', type=int, default=10000000, metavar='N',
help='size of replay buffer (default: 10000000)')
parser.add_argument('--cuda', action="store_true",
help='run on CUDA (default: False)')
parser.add_argument('--device_num', type=int, default=0, help='Select GPU number for CUDA (default: 0)')
parser.add_argument('--resume', default='default', type=str, help='Resuming model path for testing')
parser.add_argument('--validate_episodes', default=5, type=int, help='how many episode to perform during validate experiment')
parser.add_argument('--validate_steps', default=1000, type=int, help='how many steps to perform a validate experiment')
# CBF, Dynamics, Env Args
parser.add_argument('--no_diff_qp', action='store_false', dest='diff_qp', help='Should the agent diff through the CBF?')
parser.add_argument('--gp_model_size', default=3000, type=int, help='gp')
parser.add_argument('--gp_max_episodes', default=100, type=int, help='gp max train episodes.')
parser.add_argument('--k_d', default=3.0, type=float)
parser.add_argument('--gamma_b', default=20, type=float)
parser.add_argument('--l_p', default=0.03, type=float,
help="Look-ahead distance for unicycle dynamics output.")
# Model Based Learning
parser.add_argument('--model_based', action='store_true', dest='model_based', help='If selected, will use data from the model to train the RL agent.')
parser.add_argument('--real_ratio', default=0.3, type=float, help='Portion of data obtained from real replay buffer for training.')
parser.add_argument('--k_horizon', default=1, type=int, help='horizon of model-based rollouts')
parser.add_argument('--rollout_batch_size', default=5, type=int, help='Size of initial states batch to rollout from.')
# Compensator
parser.add_argument('--comp_rate', default=0.005, type=float, help='Compensator learning rate')
parser.add_argument('--comp_train_episodes', default=200, type=int, help='Number of initial episodes to train compensator for.')
parser.add_argument('--comp_update_episode', default=50, type=int, help='Modulo for compensator updates')
parser.add_argument('--use_comp', type=bool, default=False, help='Should the compensator be used.')
args = parser.parse_args()
if args.mode == 'train':
args.output = get_output_folder(args.output, args.env_name)
if args.resume == 'default':
args.resume = os.getcwd() + '/output/{}-run0'.format(args.env_name)
elif args.resume.isnumeric():
args.resume = os.getcwd() + '/output/{}-run{}'.format(args.env_name, args.resume)
if args.cuda:
torch.cuda.set_device(args.device_num)
if args.mode == 'train' and args.log_comet:
project_name = 'sac-rcbf-unicycle-environment' if args.env_name == 'Unicycle' else 'sac-rcbf-sim-cars-env'
prYellow('Logging experiment on comet.ml!')
# Create an experiment with your api key
experiment = Experiment(
api_key=args.comet_key,
project_name=project_name,
workspace=args.comet_workspace,
)
# Log args on comet.ml
experiment.log_parameters(vars(args))
experiment_tags = ['MB' if args.model_based else 'MF',
str(args.batch_size) + '_batch',
str(args.updates_per_step) + '_step_updates',
'diff_qp' if args.diff_qp else 'reg_qp']
if args.use_comp:
experiment_tags.append('use_comp')
print(experiment_tags)
experiment.add_tags(experiment_tags)
else:
experiment = None
if args.use_comp and (args.model_based or args.diff_qp):
raise Exception('Compensator can only be used with model free RL and regular CBF.')
# Environment
env = build_env(args)
# Agent
agent = RCBF_SAC(env.observation_space.shape[0], env.action_space, env, args)
dynamics_model = DynamicsModel(env, args)
# Random Seed
if args.seed > 0:
env.seed(args.seed)
env.action_space.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
dynamics_model.seed(args.seed)
# If model based, we warm up in the model too
if args.model_based:
args.start_steps /= (1 + args.rollout_batch_size)
if args.mode == 'train':
train(agent, env, dynamics_model, args, experiment)
elif args.mode == 'test':
evaluate = Evaluator(args.validate_episodes, args.validate_steps, args.output)
test(agent, env, dynamics_model, evaluate, args.resume, visualize=args.visualize, debug=True)
env.close()